
Pre-Class Work 2: Pre/Post-Conditions and
Exceptions

Pre-Conditions [Background Reading]

� Motivation
Imagine it's 1928 and you're working as a human computer to help calculate whether the Afsluitdijk
(a new dam in the Netherlands) can be successfully built. Your contract simply describes your job
responsibilities as:

Will calculate the square root of a given number.

Being so good at your job, when your boss asks what the square root of 6561 is, you can promptly
inform them that the answer is 81. Work is great until one day your boss asks what the square root
of -9 is. Your boss doesn't understand imaginary numbers, so you inform them that there isn't a
square root of -9, or any negative number. However, your boss says that this isn't an answer and that
you've violated your contract.

As a result, you're �red and forced to look for work elsewhere. You �nd a new job at NASA doing the
same work as before but you've learned from the past and make sure your contract has an extra
clause:

Will calculate the square root of a given number.

The given number must be greater than or equal to 0.

This one condition you've added has prevented an angry and confused boss from ever expecting
impossible results. The same principle this imaginary contract uses can be applied to our code
comments to ensure clients don't expect the impossible from our code. This extra "clause" in our
comments is called a pre-condition.

� What is a Pre-Condition?
A pre-condition has two key elements:

1. A statement used to inform the client about the accepted range of input. Only input that
meets these criteria is guaranteed to produce a correct output. All other input (input outside
the speci�ed criteria) is not guaranteed to compute correctly.

2. Code that veri�es the pre-condition is met before running any computations.

✏ Relevant Examples

Mathematical Ranges

Let's go back to the square root example. Imagine we wanted to write a trivial method for calculating
square roots. It might look like this:

// Behavior: Calculates the square root of any given double input
// Parameter: double value to be square rooted
// Returns: the square root of the given parameter as a double
public static double squareRoot(double input) {
 double answer = Math.sqrt(input);
 return answer;
}

Math.sqrt() is a built in Java function for calculating the square root of a given double. Documentation for
those interested can be found here. You'll notice this documentation makes use of pre-conditions and post-
conditions!

While this method works well for positive numbers, remember that square roots can only be
calculated for numbers greater than or equal to 0.

Therefore, if the client passes in a negative double like -9.0 then our code will produce an
unexpected behavior even though the client did everything we asked by passing in a double . To
avoid this problem we need to tell the client about the range of input data we can correctly produce
output on (numbers >= 0). We should also write a check into our code to make sure we don't
needlessly calculate the square root on any invalid input.

Doing so, our code might look like this:

// Behavior: Calculates the square root of a positive double input
// Parameter (input): double value to be square rooted.
// Pre-Condition: input must be >= 0
// Returns: the square root of the given parameter as a double
public static double sqaureRoot(double input) {
 double answer = -1.0;
 if (input >= 0.0) {
 answer = Math.sqrt(input);
 }
 return answer;
}

Notice now that we only calculate the square root when input is >= 0. All other times (when input is
< 0) we return -1. Even though the square root of -9 de�nitely isn't -1 we only promised to calculate
the square root if the input was in the correct range so our code does exactly what we say it will! It
would be really nice if the client had some idea of what to expect if they didn't meet the pre-
condition we set for them, but we'll discuss that in the following slide on post-conditions.

States and Types

Pre-conditions can also be used to ensure that the input to a method is of the correct type or meets
certain requirements. For example, a method that adds the number 9 to every index in a given int
array might run into problems if the array is of size 0 or the reference is null . Here is an example of
what what such a method might look like after successfully implementing pre-conditions to avoid
these potential problems.

// Behavior: Adds 9 to every index in the given array
// Parameter (nums): int array that will have 9 added to every index
// Pre-Condition 1: nums is not null
// Pre-Condition 2: size of nums is > 0
public static void squareRoot(int[] nums) {
 if (nums != null && nums.length > 0) {
 for (int i = 0; i < nums.length; i++) {
 nums[i] += 9;
 }
 }
}

Again, it would be great to let the client know what to expect after invalid input is entered but more
on that on the next slide!

� Main Points
A pre-condition is a "clause" or statement in code comments we create that speci�es a range
of inputs or conditions in which our method is guaranteed to produce correct output.

A pre-condition is like a contract between the method and client that de�nes valid input. With
pre-conditions, clients can avoid generating unexpected behavior from our code.

We implement pre-conditions by checking input in our methods before doing any
computations. If the input does not meet the pre-conditions, then the method can choose to
handle it in di�erent ways, such as by throwing an error or returning a pre-de�ned value.

Some sample areas in which we can use pre-conditions include mathematical ranges (e.g.
non-negative input for square root calculation), input checking (e.g. making sure an array is not
null and has at least 1 element), etc.

Post-Conditions [Background Reading]

� Motivation
Using the same imaginary scenario where you work as a human computer lets explore another
possible problem you may run into. Your current contract reads:

Will calculate the square root of a given number.

The given number must be greater than or equal to 0.

Your boss may ask for the square root of 84.2724 and you'll tell them 9.18 accordingly. But what
happens when your boss asks you to �nd the square root of 2? Remember that the square root of 2
is irrational, meaning it goes on forever. Based on the current wording of your contract it's unclear if
you need to spend your whole life calculating this problem or if you can simply round to 1.414. It's
this uncertainty in your contract that we want to avoid. To �x this problem, in case you ever get a
new boss who wants overly precise answers, you ask your boss to rewrite your contract and include
an extra condition. This condition will only require you to produce answers rounded to the fourth
decimal place.

Your new and �nal contract now reads:

Will calculate the square root of a given number.

The given number must be greater than or equal to 0.

Answers will be rounded to the fourth decimal place.

This extra clause describing the output of your work is analogous to a post-condition. These
conditions ensure that both you and any client (or in this scenario your computing boss) fully agree
on what the expected output looks like.

� What is a Post-Condition?
Like a pre-condition, a post-condition has two key elements:

1. A statement or expression informing the client on the range of output to expect from your
code.

2. Code that produces the correct output.

Sometimes the behavior of our programs will change under di�erent states. Think about a indexOf
method that searches for a value in an ArrayList and returns the index. If the ArrayList contains
that value then we can return the index, but if it doesn't contain that value then we might return a

default value like -1. Therefore we would have two post-conditions: one if the value is contained, and
another for if the value is not contained. Thinking about the output of our programs in terms of post-
conditions allows us as programmers to more easily identify edge cases and ensure our program in
robust and comprehensive.

✏ Relevant Example

Multiple Outputs and Post-Condition Comments

Let's say we're making a method that searches for the number 9 in a given int array and returns the
index. Lets assume our pre-conditions are the same as before such that the reference can't be null
and the size has to be greater than 0.

Before adding post-conditions, our code looks like this:

// Behavior: Searches given array for the first index that equals 9 and returns it
// Parameter nums: int array that will be searched
// Pre-Condition 1: nums is not null
// Pre-Condition 2: size of nums is > 0
// Returns: first index that equals 9
public static int findNine(int[] nums) {
 // check for invalid input
 if (nums == null || nums.length <= 0) {
 return -1;
 }
 // valid input
 for (int i = 0; i < nums.length; i++) {
 if (nums[i] == 9) {
 return i;
 }
 }
 return -2;
}

Notice here how our code and comments are completely accurate but the client has to read the code
to understand what the output might be if they don't meet the pre-conditions or there isn't a 9. We
can use post-conditions to reduce this uncertainty around the varying input.

There are three cases we should consider:

1. The pre-conditions aren't met.

2. There is a 9.

3. There is not a 9.

Since we have three possible outputs we should have three post-conditions too! Based on our
current code it looks like if the pre-conditions aren't met then we return -1. If the pre-conditions are
met and there is a 9 then we return its index, but if there isn't a 9 then we return -2. Knowing all this,
let's translate this into a post-condition comment!

// Parameter nums: int array that will be searched
// Pre-Conditions:
// nums is not null
// size of nums is > 0
// Post-Conditions:
// If the pre-conditions are not met: -1
// If nine is found: the first index containing 9
// If nine is not found: -2
public static int findNine(int[] nums) {
 // check for invalid input
 if (nums == null || nums.length <= 0) {
 return -1;
 }
 // valid input
 for (int i = 0; i < nums.length; i++) {
 if (nums[i] == 9) {
 return i;
 }
 }
 return -2;
}

Writing our comments with both pre-conditions and post-conditions ensures that the client fully
knows what to expect without having to understand our potentially complicated code. It also makes
your job as a programmer easier! This may seem counterintuitive at �rst but thinking about what
to expect for di�erent inputs is a key part of writing a comprehensive and accurate program.

� Main Points
A post-condition is a "clause" or statement in code comments we create that speci�es the
expected range of outputs or conditions after we run our method.

Post-conditions ensure that clients know what to expect from our code and know of possible
ending scenarios of our code, so we can avoid ambiguity and confusion.

We should include multiple post-conditions in our code comments based on all sorts of
conditions and scenarios (e.g. if a pre-condition is not met, if speci�c values are used, etc).

Post-conditions can help programmers �nd edge cases and handle situations di�erently based
on di�erent input, allowing for our programs to be more clear.

Using Exceptions [Background Reading]

� Motivation
Pre/post-conditions enable us to precisely describe and verify both the beginning and end states of
our programs. This gives the client extra clarity and helps us as programmers build reliable and
comprehensive programs. However, sometimes there are inputs that are so dangerous that the only
output that makes sense is stopping the entire program and informing the client of their mistake.

� What are Exceptions?
You've probably seen Exception s while debugging and maybe even thrown a few yourself.
Exception s are most commonly used to alert a client that something has gone wrong. We use
di�erent types of Exception s to denote di�erent types of problems. Unless a client catches an
Exception (not relevant to this class), throwing an Exception will stop their program. This is
incredibly useful for preventing potentially dangerous code from executing or wasting time on
calculations that wouldn't be accurate with the given input.

✏ Using Exceptions

Important CSE 123 Exceptions

Here are some key examples of Exception s you'll probably encounter and throw yourself in CSE
123.

NullPointerException : Trying to access a null object or value.

IllegalArgumentException : A parameter doesn't meet the pre-conditions.

ArrayIndexOutOfBoundsException : Trying to access an index greater than or equal to the
length of the array, or less than 0.

ClassCastException : Casting an object to another class but the original object is not an
instance of that the class. This could occur when attempting to cast a Scanner to something
that is de�nitely not a Scanner like a HashMap .

Invalid Pre-Conditions

Let's go back to our method findNine() from the previous slide. Currently the code produces three
di�erent types of output and looks like this:

// Parameter nums: int array that will be searched
// Pre-Conditions:

// nums is not null
// size of nums is > 0
// Post-Conditions:
// If the pre-conditions are not met: -1
// If nine is found: the first index containing 9
// If nine is not found: -2
public static int findNine(int[] nums) {
 // check for invalid input
 if (nums == null || nums.length <= 0) {
 return -1;
 }
 // valid input
 for (int i = 0; i < nums.length; i++) {
 if (nums[i] == 9) {
 return i;
 }
 }
 return -2;
}

A common practice to help clients understand the pre-conditions for a method and quickly identify
bugs in their code is to throw Exception s when the pre-conditions are not met. In this case we
have two pre-conditions which both involve our parameter nums . As such, it would make sense to
throw an IllegalArgumentException if either of these pre-conditions are not met.

Doing so, we would also need to adjust our post-condition comment to specify which Exception
we throw and when. These changes could look like this:

// Parameter nums: int array that will be searched
// Pre-Conditions:
// nums is not null
// size of nums is > 0
// Post-Conditions:
// If the pre-conditions are not met: throws IllegalArgumentException
// If nine is found: returns the first index containing 9
// If nine is not found: returns -2
public static int findNine(int[] nums) {
 // check for invalid input
 if (nums == null || nums.length <= 0) {
 throw new IllegalArgumentException();
 }
 // valid input
 for (int i = 0; i < nums.length; i++) {
 if (nums[i] == 9) {
 return i;
 }
 }
 return -2;
}

The exact styling of the comment is left up to the programmer to best determine but it's highly recommended
to be consistent throughout your program.

� Main Points
While pre-conditions and post-conditions can help us make reliable programs, some input
that users supply us is so dangerous that it's better to stop the program all together and tell the
client their mistake. In this case, we would rather throw exceptions.

Some important exceptions we will see and use throughout CSE 123 include
NullPointerException , IllegalArgumentException , ArrayIndexOutOfBoundsException ,
and ClassCastException .

To help clients understand pre-conditions of a method, we can throw an exception when a
pre-condition is not met.

When we throw an exception if a pre-condition is not met, we want to �x our post-
condition comment so that is speci�es what exception we will throw and when we will throw
it.

Implementing Exceptions [Programming Question]

Implement the method in the ArrayIntList class called set . This method is designed to set the
value of an index to a speci�c value. The client is responsible for passing in parameters for both the
index and value.

Your task is to implement the set method so it's behavior is in line with the pre/post-conditions
described below.

The pre-conditions for set are:

1. The given index must be greater than or equal to 0.

2. The given index must be less than the size of the List .

The post-conditions for set are:

1. If the given index is less than 0: throws an IllegalArgumentException .

2. If the given index is greater than or equal to size: throws an IndexOutOfBoundsException .

3. Updates the existing value at the given index to the given value.

An implementation with only working code will pass the tests but it's highly encouraged that you also practice
writing comments describing the pre/post-conditions.

The entire ArrayIntList class is given for reference, but you only need to implement the set method at the
top of the class.

