
Pre-Class Work 17: Hashing

Hashing [Background Reading]

� Motivation
By now, you have interacted with data structures such as HashMap s and HashSet s, which are
examples of hash tables. You have been told that these data structures can e�ciently store and
retrieve data but why is that the case? Today, we will be exploring a technique called hashing which
is what hash tables use to implement fast data retrieval and e�cient data storage.

What is Hashing? # �
The term hashing refers to a mathematical function that transforms data (such as a String or any
object) into a number called a hash value. The hash value is used to put the data into the
corresponding index in the hash table.

A hash table is an array that stores your elements through hashing.

One of the key properties of a hash function is that it should be one-way, which means that it is
easy to compute the hash value for any input, but it should be di�cult to generate the original input
from the hash value.

This property makes hash functions useful for password storage, as the actual password can be
hashed and stored instead of the plaintext password, making it more di�cult for an attacker to
obtain the original password.

It's worth noting that while hash functions are commonly used for password storage, other techniques are
used in conjunction with hashing. For the purposes of this course, we won't go into the details of these other
techniques such as salting. Just keep in mind that password security is an important consideration and there
are multiple techniques that need to be deployed to help protect user data.

To get the hash value of an object in Java, you can call the hashCode() method. For example:

public class Client {
 public static void main(String[] args) {
 String word = "hi";
 System.out.println(word.hashCode());
 }
}

Here, we see that the word "hi" has a hash value of 3329. When we call hashCode() , that is the
equivalent of putting the word "hi" into a mathematical function to compute the hash value:
hashF unction("hi") = 3329

� Main Points
Hashing is a mathematical function that transforms data into a hash value.

Each hash value will be placed in a corresponding index in the hash table, which is an array
that store our elements through hashing.

A hash function is one way: it is easy to turn our original input into a hash value, but very
di�cult to convert our hash value back into our original input.

Hash functions are great for storing passwords so we can store our hashed password instead
of our actual one, making it harder for hackers to get our password.

We can use the hashCode() method to get the hash value of an object in Java.

hashCode() [Background Reading]

In Java, hashCode() is a method which returns an integer value, known as the hash value. The hash
value is used for hashing and indexing objects in data structures like hash tables, which allow fast
retrieval and insertion of objects based on their hash values. Suppose we had the following class:

public class Car {
 private String make;
 private String model;
 private int year;

 public Car(String make, String model, int year) {
 this.make = make;
 this.model = model;
 this.year = year;
 }

 public String getMake() {
 return this.make;
 }

 public String getModel() {
 return this.model;
 }

 public int getYear() {
 return this.year;
 }

 @Override
 public int hashCode() {
 // TODO
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) {
 return true;
 } else if (o instanceof Car) {
 Car other = (Car) o;
 return this.make.equals(other.make) &&
 this.model.equals(other.model) &&
 this.year == other.year;
 } else {
 return false;
 }
 }
}

Implement hashCode()
First, let's implement hashCode() . Here is an initial implementation:

@Override
public int hashCode() {
 return this.make.length() * 2;
}

With this hash function, we take the length of the name of the make, multiply it by 2, and then
return that value. This leads us to an interesting observation which is that two objects can produce
the same hash value.

Is this a bad thing? Not necessarily. In Java's String class, you might encounter two String s that
are not equal, yet have the same hash value:

public class Client {
 public static void main(String[] args) {
 String word1 = "Siblings";
 String word2 = "Teheran";
 System.out.println(word1.hashCode());
 System.out.println(word2.hashCode());
 System.out.println(word1.equals(word2));
 }
}

When the hashCode() method returns the same hash value for di�erent objects, this results in
hash collision. In other words, this means that multiple objects are going to the same hash table
index.

While hash collisions happen, we want to minimize the amount of times it occurs in our hash
table. With our current hash function, any make with the same length will result in the same hash
value. For example, "Honda" and "Tesla" would result in a hash collision.

Recall that the hash value is used to put the object at a speci�c index in the hash table. In this
course, we will not discuss collision resolution techniques but just understand that when multiple
objects continuously map to the same index in the hash table, it can slow down the performance of
the hash table. Thus, let's revise the hash function.

A general rule of thumb when creating hash functions is to use prime numbers in order to reduce
the likelihood of a hash collision as prime numbers reduce the number patterns in a hash value.
Here is better implementation of hashCode() :

@Override
public int hashCode() {
 int prime = 31;

 return this.make.length() * 31 * this.year;
}

We can go a step even further and use the hashCode() method inside the String class!

@Override
public int hashCode() {
 return Math.abs(31 * this.make.hashCode() * this.model.hashCode() *
 this.color.hashCode() * this.year);
}

NOTE: We are using Math.abs() because some hash values can go over the integer limit in Java. Negative hash
values are perfectly legal but since we want to use the hash values for indexing, we will need them to be
positive.

Equality with Hashing
One important invariant that the hashCode() method imposes is that if two objects are equal, they
must always produce the same hash value. Therefore, when you are creating your hash function,
you cannot include any element of randomness. To put it more clearly:

Two objects can have the same hash value and not equal.

Two objects that are equal must have the same hash value.

� Main Points
In this lesson, we worked on implementing our own hashCode() method. We wanted to do
this because hash tables allow fast retrieval and insertion of objects based on their hash
values.

Two String s that are not equal may have the same hash value in Java.

A hash collision occurs when the hashCode() method returns the same hash value for
di�erent objects and multiple objects go into the same hash table index.

We want to minimize how many hash collisions occur in our hash table. One way of doing
this is to use prime numbers when creating our hash function, since prime numbers reduce
the number patterns in a hash value.

When we create our hash function, we must ensure that two objects that are equal must have
the same hash value.

But two objects can also have the same hash value and not be equal.

Implementing a Hash table [Background Reading]

Now that we've implemented the hashCode() , let's build a hash table!

Suppose that we had a garage for Car objects called Garage . The Garage class keeps track of the
parkingLot which represents the parking lot and the size which represents the number of cars in
the Garage . In our Garage , we will assign each Car a parking lot number, depending on their hash
value:

public class Garage {
 public static final int PARKING_SPOTS = 100;
 private Car[] parkingLot;
 private int size;

 // Constructs a new, empty set with the given underlying capacity
 public Garage() {
 parkingLot = new Car[PARKING_SPOTS];
 size = 0;
 }

 // Returns true if this set contains the specified car and false otherwise
 public boolean contains(Car car) {
 int index = car.hashCode() % PARKING_SPOTS;
 return parkingLot[index] != null;
 }

 // Adds the specified car to this garage if it is not already present.
 // Returns true if the car was not already present and false otherwise
 public boolean add(Car car) {
 if (contains(car)) {
 return false;
 }
 int index = car.hashCode() % PARKING_SPOTS;
 parkingLot[index] = car;
 size++;
 return true;
 }

 // Removes the specified car from this garage if it is present.
 // Returns true if the car was present and false otherwise
 public boolean remove(Car car) {
 if (!contains(car)) {
 return false;
 }
 int index = car.hashCode() % PARKING_SPOTS;
 parkingLot[index] = null;
 size--;
 return true;
 }

 // Returns the number of car in this garage
 public int size() {
 return this.size;
 }

 // Returns true if this garage has no cars
 public boolean isEmpty() {
 return this.size == 0;
 }
}

One thing to note is that in our Garage , if two Car objects have the same hash value, they will map
to the same parking lot. Again, we won't be covering any collision resolution techniques. In our
current Garage implementation, we will give the most recent Car object the parking spot.

You often hear that hash tables provide fast look-up! To fully visualize the power behind hashing,
let's see how Java's ArrayList compares with our hash table, a Garage .

� Main Points
We created a Garage class that keeps track of the number of cars in our garage and the parking
lot of each car in our garage.

We assigned each Car a parking lot based on their hash value.

To do this, we established the index of each car by using the line int index = car.hashCode()
% PARKING_SPOTS; and then we put each car into that corresponding index in the array that
holds our parking lots.

If two Car objects had the same hash value, they mapped to the same parking lot.

 We will explore how Java's ArrayList compares with our hash table, a Garage , in the next
slide!

ArrayList vs. Garage [Programming Example]

In HashingTest , we are calling add() , remove() , and contains() on 20 Car objects on Java's
ArrayList and our Garage to see how long it takes to complete. Press the "Run" button a couple of
times to see the performance di�erence!

NOTE: The performance di�erent between the two will be minor but it should be visually noticeable. You could
imagine that if this program scaled to a larger amount of Car objects, the di�erence would be much greater
than it currently is.

