
Pre-Class Work 16: Hu�man

Data Compression [Background Reading]

Motivation
We are living in an exponentially growing digital age! It begs the question of how we can e�ciently
store and process the endless amounts of data being generated.

This is where data compression can help us. The goal of data compression is to represent the same
information but reduce the size the data takes up, thereby making it more e�cient to store, transmit,
and process the data. There are two main types of data compression: lossy and lossless.

1 � Lossy Compression
Lossy compression is a type of data compression where some of the original data is lost during the
compression process, but the remaining data is still useful. Lossy compression is achieved by using
algorithms that remove less important data.

For example, in image compression algorithms, similar pixels might be treated as the same, causing
the resulting image to look close to the original but reduce the amount of space it takes up. Lossy
compression is typically used for data that does not need to be preserved exactly, such as images,
audio, and video. A common example is JPEG image compression, which often results in blocky or
fuzzy looking images.

2 � Lossless Compression
Lossless compression is a type of data compression where the original data can be exactly
reconstructed from the compressed data. This is achieved by using algorithms that eliminate
redundancy in the data, such as Hu�man coding.

Lossless compression is typically used for data that needs to be preserved exactly, such as text,
�nancial data, and program �les.

� Main Points
We are living in a digital age so we need to e�ciently store and process endless amounts of
data.

Data compression allows us to represent the same information but reduce the size the data
takes up.

Lossy compression involves using algorithms to remove less important data.

Some of the original data is lost, but the remaining data is useful.

Lossless compression allows us to compress data and then exactly reconstruct the original data.

We use algorithms to eliminate redundancy in the code, such as via Hu�man coding.

Hu�man Coding [Background Reading]

� Background
ASCII is a character encoding standard that represents characters using 7 bits, allowing for a total of
128 di�erent characters to be represented. ASCII was developed in the 1960s and became widely
used in computer systems, communication protocols, and other areas. Eventually, 128 characters
wasn't enough so Extended ASCII was created. Extended ASCII extends the original 7-bit ASCII
character set to use 8 bits by adding 128 additional characters (128-255) to the original ASCII
character set (0-127). T

Thus, in simple text �les, each character is represented with 8 bits. If we wanted to compress a text
�le, how would we achieve that? What if di�erent characters are represented by di�erent numbers of
bits instead of the standard 8 bits?

Hu�man coding is a lossless data compression algorithm that was developed by David A. Hu�man
in 1952 while he was a graduate student at MIT. The basic idea behind Hu�man coding is to
represent each symbol in a message using a variable-length code, where more frequently occurring
symbols are assigned shorter codes and less frequently occurring symbols are assigned longer codes.
This results in a more compact representation of the message, as shorter codes are used more
frequently.

� Hu�man Tree
In your next assignment, you will be creating a Hu�man Tree. Essentially, Hu�man Trees are just
binary trees which allows us to implement a relatively simple form of �le compression. To create
your Hu�man Trees, you will use the Hu�man coding algorithm which works by constructing a
binary tree based on the frequency of each symbol in the message.

The symbols with the lowest frequency are assigned to the leaves of the tree, and the symbols with
the highest frequency are assigned to the root of the tree. The process of constructing the binary tree
involves repeatedly merging the two symbols with the lowest frequency into a new node, until all
nodes are combined into a single tree.

Once the binary tree is constructed, the code for each symbol is determined by traversing the tree
from the root to the leaf node that corresponds to the symbol. The resulting code is a sequence of 0s
and 1s, with the code for each symbol being a unique pre�x of its corresponding code in the binary
tree.

This property allows for e�cient decoding of the compressed message, as the decoder can simply

follow the code through the binary tree to determine the original symbol.

We will brie�y discuss how a Hu�man Tree is created. Note that the assignment speci�cation will
o�er a much more detailed explanation.

Consider a �le has 3 'a's, 3 'b's, 1 'c', 1 'x', and 2 'y's. Then, we would have the following nodes:

The next steps will visualize the Hu�man coding algorithm where the nodes with lowest frequency
are merged together until all nodes are combined together:

1 � First merge

2 � Second merge

3 � Third merge

4 � Fourth merge (The �nal Hu�man Tree)

We can see that the top node that says 10 has the node that says 4 to the left of it with a line that
has a label 0 . We can also see that the top node that says 10 has the node that says 6 to the left of it
with a line that has a label 1 .

Every node that is less than that of the previous node is to the bottom left of that node connected by
a line that says 0 , and every node that is more than that of the previous node is to the bottom right
of that node connected by a line that says 1 .

Based on the Hu�man Tree the following character encodings are as follows:

00 is the character encoding for ‘y’

010 is the character encoding for ‘c’

011 is the character encoding for ‘x’

10 is the character encoding for ‘a’

11 is the character encoding for ‘b’

Notice how each character doesn't utilize the full 8 bits to be encoded. 'y' needs 2 bits, 'c' needs 3 bits,
'x' needs 3 bits, 'a' needs 2 bits, and 'b' needs 2 bits. This is the power of the Hu�man coding
algorithm!

� Main Points
Hu�man coding is a lossless data compression algorithm that represents symbols in a
message using variable-length codes.

For e�cient compression, we assign shorter codes to more frequently occurring symbols
and longer codes to less frequent symbols.

In Hu�man coding, we create a Hu�man tree, which is a binary tree where we assign
symbols with lower frequencies to leaves and symbols with higher frequencies to the root.

We merge nodes with the lowest frequencies!

We start out with individual nodes for each symbol and include their frequencies. Then we keep
merging nodes with the lowest frequencies until all nodes are connected and we form one
single tree.

We determine the code for each symbol by traversing the Hu�man Tree from the root to the
leaf. The code will be a bunch of 0s and 1s, with shorter codes for more frequent symbols.

Priority Queues [Background Reading]

To implement a Hu�man coding algorithm, you will need to familiarize yourself with a new data
structure.

A priority queue is a data structure that stores a collection of elements and allows them to be
retrieved in a speci�c order based on their priority. Thus, elements in a priority queue must
implement the Comparable interface. The order of elements in a priority queue can be either
ascending or descending, depending on the application.

To use a priority queue, you will need to import from java.util.*.

� Constructing a Priority Queue
To create a priority queue in Java, you can use the following syntax:

Queue<Integer> pq = new PriorityQueue<>();

� Adding to a Priority Queue
To add to a priority queue, you can use the add() method:

Queue<Integer> pq = new PriorityQueue<>();
pq.add(5);
pq.add(3);
pq.add(1);

� Removing from a Priority Queue
To remove from a priority queue, you can use the remove() method:

Queue<Integer> pq = new PriorityQueue<>();
pq.add(5);
pq.add(3);
pq.add(1);
System.out.println(pq.remove()); // 1
System.out.println(pq.remove()); // 3
System.out.println(pq.remove()); // 5

� Main Points
A priority queue is a data structure that stores a collection of elements so we can get them in
a speci�c order based on their priority.

Elements in a priority queue must implement the Comparable interface.

We make a priority queue using this syntax: Queue<Integer> pq = new PriorityQueue<>
();

We add to a priority queue using this syntax: pq.add(1);

We remove from a priority queue using this syntax: pq.remove();

