
Pre-Class Work 14: Binary Search Tree (BST)

Binary Search Intuition

� Intuition
Imagine a wizard � is thinking about a random integer in 1 to 10 inclusively and asking you to guess 
that number. If you guess it wrong, he'll tell you if your guess is too large or too small. The less 
number of tries you do, the more extra credits you will get at the end of the quarter. How would you 
approach this problem in order to get the most extra credits by using the fewest number of tries?

�  Iterative Search
Suppose that I don't care about the extra credits. I just want to guess the right number and �nish the 
game regardless of the number of tries. I will start guessing from 1, 2, 3, ... until the wizard tells me 
I've guessed the number correctly. However, what if the number is 10 and we do care about extra 
credits? An iterative search would result in the worst-case scenario -- it'll take me 10 tries to get the 
number correctly!

�  Binary Search
What if instead, we started guessing from 5? Suppose that the wizard tells me "Hmm.. it's too low." I 
can now consider the range from 6 to 10 and get rid of half of the original candidates to consider. 

Then, we use a similar strategy to guess 8. The wizard tells me "it's still too low." Now, I can just 
consider the range from 9 to 10 by getting rid of half of the original candidates.

Notice that at each step, I'm always guessing the middle number of the remaining range, based o� of 
the information from the wizard. This method of guessing is called Binary Search, and it is a core 
algorithm in computer science!

Observe that with iterative search, when the wizard said we got the wrong number, we only 
eliminated one number from our pool of possible guesses. With binary search, we got rid of half of 
the remaining numbers, which allows us to �nd the correct answer much quicker!



� Main Points
If we care about the time we spend (or credits we spend) trying to search for something, an 
iterative search would result in the worst-case scenario.

We would have to go through all options! 

Binary search can only work if we have immediate information for which range is left to 
consider.

Binary search takes advantage of lists of items which are sorted -- the idea of something 
being "too low" or "too high" is what allows binary search to be so e�cient!

An example of binary search would be us guessing a number in between 1 and 10. If we 
guess 5, and the wizard says our guess is too low, then we only have to search through 
numbers 6-10 now rather than all 10 numbers!



Binary Search Tree (BST)

� Tree Review

Properties

Trees are recursively de�ned in terms of their nodes.

Nodes can be:

null (an "empty node")

A node with a piece of data, and a left and right child

The children of a non-null node are subtrees which can either be empty, or a non-
empty tree with left/right subtrees (and so on)

Each node has a parent

Each non-empty node stores a piece of data

� Binary Search Tree (BST)
BSTs are like regular trees in that they provide a tree-like structure to represent some data. In 
addition to being a regular tree, BSTs are special because they have an extra property/rule that 
needs to be preserved: 

For any given node in the tree (including the root):

All nodes in the node's left subtree should have smaller values than the root

All nodes in the node's right subtree should have larger values than the root

Notice that the above property holds for all nodes in the tree, i.e., all subtrees are also binary search 
trees.

� Why does this property actually matter? 

With this special property, binary search becomes possible! Imagine we wanted to see if the number 
6 was inside a BST. At the beginning, we can compare some 6 with the root's  data  �eld and 
immediately get the information whether this data  is too large or too small. If the data  matches 6, 
then we're done!

However, if it's too large, then we should look for the number 6 in the left subtree, because all nodes 
in the left subtree have smaller values than 6. If it's too small, we would like to go to the right subtree 



because all nodes in the right subtree would have larger values than 6. (This is the example you can see 
below)

� Binary Tree Zoo

Binary Search Trees can look very di�erent, even though they store the exact same set of numbers! 
The following visualizations are all valid BSTs that represent a list of integers [1, 2, 3, 4, 5, 6] .



Notice that the last one looks like a linked list, but it also a tree! Furthermore, this ful�lls all properties of BST 
so it would be considered a BST!

� Main Points
Trees are recursively de�ned structures with nodes. 

Nodes can be null (an "empty node") or contain data and have left and right children. 

Nodes have parents, and non-empty nodes store data.

A binary search tree is a tree with an extra property: for any given node in the tree, all 
nodes in its left subtree have smaller values than the node, and all nodes in its right subtree 



have larger values than the node.

BSTs are awesome for binary search! When we search for a value, we can compare it with the 
root node and from there we can decide whether to go left or right.

We can visually represent BSTs in a variety of ways, even with a linked-list-like structure!



x = change(x)

x = change(x)  is a common pattern to recursively modify a tree. From the binary tree section, we 
learned how to traverse through a tree recursively and read the values from the nodes in order. 
Modifying a node is trickier and uses recursion with the x = change(x)  pattern. 

✏  Delete a node from BST
Consider the following operation: we want to delete the leaf node in a binary tree that contains the 
value 6 . Intuitively, we might consider traversing through the tree and check if the node we are 
looking at is a leaf node and check if the value is 6 . 

The code might look like: 

public void intuitiveDelete6(IntTreeNode root) {
    if (root != null) {
        // Check if it's leaf node
        if (root.left == null && root.right == null) {
            // Check if it's value is 6
            if (root.data == 6) {
                // TODO: delete this node
            }
        } else {
            // root has a left child
            if (root.left != null) {
                intuitiveDelete6(root.left);
            }
            // root has a right child 
            if (root.right != null) {
                intuitiveDelete6(root.right);
            }
        }
    }
}

However, we get stuck @ line 7 because we don't have access to the parent of this nodein order to 
delete this node. You can also think of it as when deleting a node from a LinkedList , we usually 
need to access the previous node and change its next  �eld to ignore the curr  node. Instead of 
preserving the parent node here in binary tree, we adopt the pattern x = intuitiveDelete6(x) . 

We let the IntuitiveDelete6  return the root of the subtree after deleting the 6. The trust 
that we put on the recursive call of intuitiveDelete6  is that whatever root we put in as the 
parameter, this method will return the root with its subtree after deleting possible 6 in it. 



Once we hit the leaf node with 6 in it, we would like to return null  because null  is deleting the 
node with value 6 in the subtree with root  being the leaf node containing 6 .

� Our Approach

To sum up the modi�cation we need, 

(1) we change the return to be a root of the subtree and believe that this returned subtree 
will not contain a leaf node of value 6, 

(2) we change the base case to return null  because the leaf node of value 6 will be null after 
the deletion, 

(3) we change the recursive calls to modify the left and right children of the current root  with 
the pattern x = change(x) , and 

(4) return the modi�ed root after we �nish modifying its left and right children. The modi�ed 
version looks like: 

public IntTreeNode delete6(IntTreeNode root) {
    if (root != null) {
        // Check if it's leaf node
        if (root.left == null && root.right == null) {
            // Check if it's value is 6
            if (root.data == 6) {
                return null;
            } else {
                return root;
            }
        } else {
            // root has a left child
            if (root.left != null) {
                root.left = delete6(root.left);
            }
            // root has a right child 
            if (root.right != null) {
                root.right = delete6(root.right);
            }
            // return the root after we modify it's left and right children
            return root;
        }
    }
    // note: the return root statements on lines 9 and 21 can technically be
    // removed as they will eventually exit out of their conditionals and return here
    return root;
}

✏  Insert a node into BST



Insertion is also a kind of modi�cation. To insert a leaf node and preserve the ordering property of 
BST, we will adopt the pattern of x = change(x)  and change the conditions according to the 
ordering property of BST. 

Believe that insert(root, value)  will insert a new node at a position that preserves the 
BST order. The only decision left to decide is that, given the current root, how do you know which 
subtree to insert this new node considering its value? 

Suppose that this new node has a value of 7  and the current root  we are having is 5 . Because of 
the BST property, we have to insert this node to the right subtree because 7 > 5 . Thus, we will 
modify the right subtree of the current root by root.right = insert(root.right, value) . Once 
we hit the case of root = null , it indicates that we �nd a place to insert  this node without 
violating any BST property. 

At this point, we can simply create a new node here with the value  and return it for the parent to 
point to as their left  or right  subtree. The implementation looks like: 

public IntTreeNode insert(IntTreeNode root, int value) {
    if (root == null) {
        return new IntTreeNode(value);
    } else {
        if (root.data > value) {
            // Should insert the left subtree
            root.left = insert(root.left, value);
        } else {
            // Should insert the right subtree
            root.right = insert(root.right, value);
        }
        // return the root after modification
        return root;
    }
}

� Main Points
To delete a node from a BST (in this case the node that contains the value 6) we used  x = 
intuitiveDelete6(x) , which we developed from x = change(x);

We change the return value to be the root of the subtree without the target value.

The base case returns null  because the leaf node with the target value should become 
null  after deletion.

We modify the left and right children of the current root using the pattern x = 
change(x)  and return the modi�ed root after updating its left and right children.

To insert a node into a BST (in this case a node that contains the value 7) while maintaining its 
ordering property, we also used the pattern x = change(x);



Once we hit the case of root = null , we found a place to insert  this node

Otherwise, if the new node's value is less than the current root's value, we insert it into 
the left subtree.

If the new node's value is greater, we insert it into the right subtree.

We return the modi�ed root of the subtree after insertion.


