
Pre-Class Work 13: Binary Trees

Trees [Background Reading]

� Motivation
Trees are a very common type of data structure used in computer science to represent a myriad of 
things. For example:

A tree is what’s used to implement TreeSet  and TreeMap  to keep data sorted and e�ciently 
�ndable

Folders and �les in a computer form a tree where there is a top folder (the root) and sub-�les 
(children). We’ll see that just like the �le was de�ned recursively, a tree will be de�ned 
recursively as well.

A family tree (parents and children) to track genealogy or an organizational chart.

And much much more!

� Binary Trees
Binary trees are one example of the tree data structure. As the name suggests, each node in a 
binary tree has at most two children, which are referred to as the left child and the right child. This 
is similar to the idea of the ListNode  forming up a linked list, where a linked list node stores a “next” 
reference. 

You can think of binary tree nodes as storing two "next" references! The top-most node in the tree is 
called the root node, while the nodes that do not have any children are called leaves.



The binary tree has a very natural recursive de�nition that matches a tree of any height! A tree is one 
of two possibilities 

An empty tree (or null )

A root node that contains

data (e.g. an int ) 

a left subtree

a right subtree

These left/right subtrees also follow the de�nition of trees above! This means they could be empty 
( null ), or they could be a node with some data and two subtree children! This de�nition could go on 
and on for as long as necessary since it is recursive.

Here are some examples of binary trees (notice they all match this recursive de�nition since some of 
the subtrees are empty which is allowed!).



� Terminology
There is usually a lot of terminology that goes along when learning trees. Here are the most common 
terms you will hear being used when discussing trees:

A node is a building block the tree that will contain some data value and its left/right subtrees.

root: The topmost node of a tree

leaf: A node that has no children (i.e. both children are empty trees)

branch: An internal node; neither the root nor a leaf.

parent of a node: A node that refers to this node (in the picture below, 1 is a parent of 
both 2 and 3)

child of a node: A node that is referred to by this node (in the picture below, 2 and 3 are 
children of 1)

sibling of a node: Another node in the tree with a common parent (2 and 3 are siblings in 
the picture below).

subtree: The smaller tree of nodes to the left/right of the current node

height: The length of the longest path from the root to any node (the height of the tree in the 
picture below is 2)

level or depth: The length of the path from a root to a given node.



� Main Points
Trees are a very common construct in computer science. A binary tree is a variant of the tree 
structure where each node has at most two children (the left and right child)

We can think of binary trees as storing two "next" references!

The top-most node in a binary tree is the root, and nodes that do not have any children are 
leaves.

A binary tree has a naturally recursive de�nition and is one of two possibilities:

An empty tree (or null )

A root node that contains

data (e.g. an int ) 

a left subtree

a right subtree

Common terms we will see when working with binary trees include node, root, leaf, branch, 
parent, child, sibling, subtree, height, and level/depth.



Anatomy of Binary Trees [Background Reading]

The best way to learn about a binary tree is to implement our own version of one! We will focus on 
making a tree that stores int  values and call this class an IntTree .

IntTreeNode

Before we can implement IntTree , we will need to consider what the nodes will keep track! Recall 
that binary tree nodes are the individual building blocks in a binary tree similar to how a list node 
is a building block for a linked list. We will call our binary tree node IntTreeNode  and implement it 
as a static  class inside IntTree . 

As a technical note that’s reason is outside the scope of CSE 123, we are making IntTreeNode  static  since 
this more appropriately �ts our needs. You don’t need to understand why it is static , all you need to know is 
that you de�ne the node class inside the tree class.

public class IntTree {
   // TODO: Implement IntTree

   public static class IntTreeNode {
        public int data; // data stored at this node
        public IntTreeNode left; // reference to left subtree
        public IntTreeNode right; // reference to right subtree
    }
}

Here, data  represents the value stored inside the IntTreeNode . left  and right  are references to 
the next IntTreeNode ! You can think of this as having two "next" references in a ListNode . We'll 
need to provide an implementation for the constructors so that IntTree  can actually construct the 
nodes:

    public static class IntTreeNode {
        public int data; // data stored at this node
        public IntTreeNode left; // reference to left subtree
        public IntTreeNode right; // reference to right subtree

        // Constructs a leaf node with the given data.
        public IntTreeNode(int data) {
            this(data, null, null);
        }

       // Constructs a leaf or branch node with the given data and links.
       public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {



            this.data = data;
            this.left = left;
            this.right = right;
        }
    }

IntTree

Now that we �nished implementing IntTreeNode , we can implement IntTree . First, let's consider 
what �elds we'll need. Similar to how LinkedIntList  was implemented, we only need to keep track 
of one node in order to have access to the entire tree. 

In LinkedIntList , that �eld which gave us access to every other node was called front . We will call 
our �eld overallRoot :



// This class represents a tree of integers
public class IntTree {
    private IntTreeNode overallRoot;

    // Constructs an empty tree
    public IntTree() {
        overallRoot = null;
    }

    // Class that represents a single node in the tree
    private static class IntTreeNode {
        public int data; // data stored at this node
        public IntTreeNode left; // reference to left subtree
        public IntTreeNode right; // reference to right subtree

        // Constructs a leaf node with the given data.
        public IntTreeNode(int data) {
            this(data, null, null);
        }

        // Constructs a leaf or branch node with the given data and links.
        public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {
            this.data = data;
            this.left = left;
            this.right = right;
        }
    }
}

For now, we will modify our constructor to create a default tree (we'll discuss a better way to add and 
remove nodes in a future lesson):

// This class represents a tree of integers
public class IntTree {
    private IntTreeNode overallRoot;

    // Constructs a tree with default
    public IntTree() {
        overallRoot = new IntTreeNode(17);
        overallRoot.left = new IntTreeNode(41);
        overallRoot.right = new IntTreeNode(9);
        overallRoot.left.left = new IntTreeNode(29);
        overallRoot.left.right = new IntTreeNode(6);
        overallRoot.right.left = new IntTreeNode(81);
        overallRoot.right.right = new IntTreeNode(40);
    }

    // Class that represents a single node in the tree
    private static class IntTreeNode {
        public int data; // data stored at this node
        public IntTreeNode left; // reference to left subtree
        public IntTreeNode right; // reference to right subtree



        // Constructs a leaf node with the given data.
        public IntTreeNode(int data) {
            this(data, null, null);
        }

        // Constructs a leaf or branch node with the given data and links.
        public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {
            this.data = data;
            this.left = left;
            this.right = right;
        }
    }
}

As a word of caution, what we are doing in the constructor is not great code quality. You are welcome to write 
similar code as a method of testing but you should not submit code which chains multiple accesses. We'll 
cover a better way to initialize trees in a future lesson.

Here is what IntTree  is initialized to:



As we can see, the root node has a value of 17. Its left node has a value of 41 and the left node's 
children are 29 and 6. The root node's right node has a value of 9 and its children are 81 and 40.

� Main Points
We created our own version of a binary tree by implementing IntTree , a tree that stores int  
values.

Binary tree nodes are the individual building blocks in a binary tree similar to how a list 
node is a building block for a linked list. 

We made our own binary tree node IntTreeNode  and implemented it as a static  
class inside IntTree . 



We chose to include three �elds inside IntTreeNode : data  (the data stored inside the node), 
left  (a reference to our left subtree), and right  (a reference to our right subtree)

Since we only need to keep track of one node in order to have access to the entire tree, we 
added one �eld to our IntTree  class named overallRoot , which is an IntTreeNode .

We then modi�ed our constructor to make a default tree with our �nal constructor being:

public IntTree() {
        overallRoot = new IntTreeNode(17);
        overallRoot.left = new IntTreeNode(41);
        overallRoot.right = new IntTreeNode(9);
        overallRoot.left.left = new IntTreeNode(29);
        overallRoot.left.right = new IntTreeNode(6);
        overallRoot.right.left = new IntTreeNode(81);
        overallRoot.right.right = new IntTreeNode(40);
}



Implementing contains() [Background Reading]

Now that we have the IntTree  class set up, all that is left is to implement some methods! A common 
functionality for objects of binary tree classes and other classes that contain data is to see whether or 
not they contain a certain value. 

Let’s give this functionality to objects of our IntTree  class by implementing contains() , which will 
return a boolean  value. More speci�cally, it will return true given int  value is in our IntTree  and 
false otherwise. 

We start with the method stub

// post: returns true if the given integer is in the IntTree
// returns false otherwise
public boolean contains(int value) {
    // TODO: implement this method
}

� Private Helper Methods

Recall that binary trees are a recursively de�ned data structure, meaning it's natural to use recursion 
to solve binary tree problems. Remember, when we write recursive methods we want each method 
call to represent one small part of solving the larger problem. 

In this case, we should have each method call represent one instance of the de�nition of our binary 
tree. That is, it should either deal with the case where we are at the empty tree, or it should deal with 
the case where we are at a node with potentially left and right subtrees.

In order to do this, we need some way to keep track of where we currently are in the tree at the time 
the recursive method is called. 

Since we have no way of doing this with just the public  method, we introduce a private  helper 
method that takes in an IntTreeNode  parameter that represents the current node we are at (this is 
exactly like what we did in the print  method in class).

// post: returns true if the given integer is in the IntTre
// returns false otherwise
public boolean contains(int value) {
    // TODO: implement this method
}

// post: return true if the tree starting at the given
// IntTreeNode contains the given value. Returns false otherwise
private boolean contains(IntTreeNode root, int value) {



    // TODO: implement this helper method
}

Now we can begin to write our recursive method. Let’s start with the private  helper, which will be 
doing the bulk of the work. Remember, recursive methods have two parts, a base case and a 
recursive case. We can use the recursive de�nition of a binary tree to help us spot what our base case 
should be and what our recursive case should be. 

Let’s start with the base case.

1 � Base Case
Remember, we want the base case to be the simplest, most basic version of the problem at hand that 
we can solve almost immediately. What’s a simple tree for which we can immediately tell if it 
contains our value? 

The empty tree is simple since we know that the empty tree can’t contain our value. How do we know 
if a tree is empty? If it is null  then we know there are no nodes in our tree, and thus it is empty. We 
can then signify that it doesn’t contain our value by returning false . 

The following is a good base case

private boolean contains(IntTreeNode root, int value) {
    if (root == null) {
        return false;
    } else {
        // TODO: implement recursive case
    }
}

2 � Recursive Case
Let’s move on to the recursive case, which is when we have a binary tree that is a node with 
potentially left and right subtrees. When writing recursive cases for binary trees, we need to address 
each part of the de�nition. As a general rule of thumb, here is a list of cases to consider when 
working with binary trees:

Handle current node

Handle left subtree

Handle right subtree

We'll also need to �gure out somehow link above parts into a larger result. In our contains()  
example, we can handle the current node by seeing if it contains the value (i.e. root.data == 



value ), in which case we want to return true  to signify that we found the value! 

Notice in this case we don’t have to recurse because we immediately know the answer. This case 
checks o� the “handle current node” task of our recursive todo list. Our updated method:

private boolean contains(IntTreeNode root, int value) {
    if (root == null) {
        return false;
    } else if (root.data == value) {
        return true;
    } else {
        // TODO: implement recursive case
    }
}

Now we need to handle the left and right subtrees. We know that a subtree is really just a binary tree 
that starts at either root.left  or root.right , so we can see if the value is in a subtree by calling 
our recursive method on that subtree. This would be a call to contains(root.left, value)  for the 
left subtree and contains(root.right, value)  for the right one. 

Here is a visualization:

How should we link the two recursive calls on the subtrees together? Sometimes it can help to 
describe what we want to return in order to �gure out how to link the recursive calls together. If the 
current node does not contain the value (this means we are in the else  branch), then we want to 



return true  if the left subtree or the right subtree contains the value. T

hus we can use the logical operator ||  to complete our private  helper method:

private boolean contains(IntTreeNode root, int value) {
    if (root == null) {
        return false;
    } else if (root.data == value) {
        return true;
    } else {
        return contains(root.left, value) || contains(root.right, value);
    }
}

Now all that is left is to pair it with the public  method! We want to start at overallRoot , so the 
completed pair looks as follows:

public boolean contains(int value) {
    return contains(overallRoot, value);
}

private boolean contains(IntTreeNode root, int value) {
    if (root == null) {
        return false;
    } else if (root.data == value) {
        return true;
    } else {
        return contains(root.left, value) || contains(root.right, value);
    }
}

The most important thing to takeaway from this reading is that we use recursion to solve many 
binary tree problems because their recursive de�nition lends itself to more succinct and readable 
recursive solutions. 

It’s also important to note that we can use the recursive de�nition of a binary tree to help guide us 
when implementing these recursive solutions.

� Main Points
The contains()  method in binary trees will return whether a value is found in the tree (true 
or false).

We often use a private helper method with additional parameters (such as the current node of 
the tree) when implementing the contains()  method and the helper method will perform the 
recursive search.

 The base case in the contains()  method is when the current node is null  (empty subtree).



The contains()  method will return false in this case since an empty subtree by default 
contains no values.

 In the recursive case, the method checks if the current node contains the  value. 

If it does, the method returns true. 

If it doesn't, the method makes recursive calls on the left and right subtrees and combines 
their results with the logical OR ( || ) operator.

We use recursion to solve many binary tree problems because their recursive de�nition 
lends itself to more succinct and readable recursive solutions.



Binary Tree Traversal [Background Reading]

Types of Traversals
Depending on how you traverse through a binary tree, you will get di�erent output. There are three 
main types of binary tree traversals:

pre-order: In a pre-order traversal, the current node is visited �rst, followed by the left and right 
children.

in-order: In an in-order traversal, the left child is visited �rst, followed by the current node and 
the right child.

post-order: In a post-order traversal, the left and right children are visited �rst, followed by the 
current node. 

For example, consider the following binary tree:



Here is the output depending on traversal:

pre-order: 17 41 29 6 9 81 40

in-order: 29 41 6 17 81 9 40

post-order: 29 6 41 81 40 9 17

We can express these types of traversal with the following code:

private void printPreorder(IntTreeNode root) {
    if (root != null) {
       System.out.print(root.data + " ");
       printPreorder(root.left);
       printPreorder(root.right);
    }
}



private void printInorder(IntTreeNode root) {
    if (root != null) {
        printInorder(root.left);
        System.out.print(root.data + " ");
        printInorder(root.right);
    }
}

private void printPostorder(IntTreeNode root) {
    if (root != null) {
       printPostorder(root.left);
       printPostorder(root.right);
       System.out.print(root.data + " ");
    }
}

� Sailboat Approach
There is a binary tree traversal trick which can help you quickly determine the pre-order, in-order, 
and post-order output called the sailboat approach. Imagine that each node is an island and that your 
cursor is the sailboat. 

The main idea is to start at the root and move left-downwards, tracing a path around the tree (the 
islands). As you pass each node on the proper side, you will process it. To �nd out a certain traversal, 
you can mark a node on a certain side:

pre-order: left side

in-order: bottom

post-order: right side

Suppose we had the following binary tree:



A pre-order traversal would give us: F B A D C E G I H. Here is what a pre-order traversal would look 
like using the sailboat approach:



A in-order traversal would give us: A B C D E F G H I. Here is what a in-order traversal would look like 
using the sailboat approach:



A post-order traversal would give us: A C E D B H I G F. Here is what a post-order traversal would 
look like using the sailboat approach:



� Main Points
Depending on how you traverse through a binary tree, you will get di�erent output. There are 
three main types of traversals and the  sailboat approach can help us determine their output.

Pre-order traversal

The current node is visited �rst, followed by the left and right children.

� -> Trace a path around the tree (the islands) and mark each node on the left side.

In-order traversal

The left child is visited �rst, followed by the current node and the right child.

� -> Trace a path around the tree (the islands) and mark each node on the bottom.

Post-order traversal

 The left and right children are visited �rst, followed by the current node.



� -> Trace a path around the tree (the islands) and mark each node on the right side.



Binary Tree Traversal [Practice Problem]

Question 1

No response

Question 2

No response

Question 3

No response

Consider the following tree.

          +---+
          | 3 |
          +---+
         /     \
     +---+     +---+
     | 5 |     | 2 |
     +---+     +---+
    /         /     \
+---+     +---+     +---+
| 1 |     | 4 |     | 6 |
+---+     +---+     +---+

Give the elements of the tree below in the order they would be printed by a pre-order traversal. 
Separate each number with a single space.

Give the elements of the tree below in the order they would be printed by a in-order traversal. 
Separate each number with a single space.

Give the elements of the tree below in the order they would be printed by a post-order traversal. 
Separate each number with a single space.



size

Write a method size  that returns the total number of nodes in the tree.

The following tree has a size of 9.

               +---+
               | 5 |
               +---+
              /     \
          +---+     +---+
          | 3 |     | 6 |
          +---+     +---+
         /     \         \
     +---+     +---+     +---+
     | 2 |     | 4 |     | 7 |
     +---+     +---+     +---+
    /                   /     \
+---+               +---+     +---+
| 1 |               | 8 |     | 9 |
+---+               +---+     +---+


