
Pre-Class Work 12: Recursive Backtracking

Recursive Backtracking [Background Reading]

� Motivation
Let's say that we're a UW student living in the dorms. This means we have lots of dining money in our
dining cards. Almost too much money... It's the end of the quarter, and we need to make sure we
spend all of the money before it gets donated to HFS (who probably does not need that money).
We're at the Hub and we have lots of menu items to choose from.

What are the possible choices that we can make to spend all our money, and how can we �nd them?

Well, we could just �nd out all possible combinations of items that we could have, but in some cases,
that doesn't really work out, right? We have �nite amounts of money, meaning �nite numbers of
choices, meaning that not every combination is viable. Additionally, the menu items at the Hub are
�nite, meaning that they can run out of stock.

So we're limited by both our money and the possible items we can buy.

Last time, we introduced exhaustive search, in order to look for all possible solutions to a certain
problem. While this may seems useful in some cases, in most cases, we're looking for a particular
solution that �ts some set of conditions.

This means that we don't always need to look through every single possible choice, especially when
we know that there's no point in continuing to look when that path has already broken the conditions
for the solution that we want.

� Recursive Backtracking
Instead, we should use recursive backtracking to go back to right before those conditions were
broken and continue searching. Let's break down what recursive backtracking means. Here,
backtracking means "�nding solution(s) by trying partial solutions and then abandoning them if they
are not suitable", while recursive means that we're using recursion to help us do so. Remember the
choose-explore-unchoose pattern that we introduced in exhaustive search? Let's revisit that in
more detail.

Recursive backtracking often comes in handy for problems where we're:

producing all permutations of a set of values

parsing languages

making games: anagrams, crosswords, word jumbles, 8 queens

and in combinatorics and logic programming

You may notice some similarities of exhaustive search and recursive backtracking. And you're
right, they're actually one in the same (if you use recursion for both)!

Think of exhaustive search as being limited by a condition of the number of choices you can make.
You can't make in�nite choices! But once you get to a certain number (i.e. the number of digits),
you're out of choices and have to backtrack.

� Main Points
Exhaustive search aka �nding all possible solutions isn't always practical when we want
speci�c solutions under certain conditions - we can't make in�nite choices!

Instead, we can try recursive backtracking, which involves using recursion to make choices,
explore their consequences, and backtrack if they lead to invalid solutions.

We will work with the choose-explore-unchoose pattern when exploring recursive
backtracking!

Recursive backtracking is especially helpful when we're producing all permutations of a set
of values, parsing languages, and more!

Main idea: once we get to a certain number, we are out of choices and must backtrack.

Choose-Explore-Unchoose!

Let's go back to our example with dining money and items at the Hub.

Given that our balance or dollarsLeft is $3, and we have the above assortment of menu items,
what are all the possible combinations of food items that we can buy? Let's use recursive
backtracking to �nd out!

As we saw in the exhaustive search lesson, we need a way to remember the choices we've already
made. Thus, let's create a data structure chosen to store them! It can be any data structure we feel
best suits the situation, which in this case, could be a List . Here's what we're starting with:

Now let's build our decision tree. Say we choose the $1 cookie to start with. What would
dollarsLeft and chosen look like?

We choose 1, then update chosen and dollarsLeft accordingly for that choice. Since we haven't
met our base case of using all our money in our Husky Card (dollarsLeft = 0), we don't output
anything and continue exploring. Let's say we choose another cookie that's $1. Then again, until our
dollarsLeft = 0 . What happens when we meet our base case?

In this event, chosen: [1, 1, 1]; output: [1, 1, 1]; dollarsLeft: 0.

At that point, we know we've arrived at some outcome: we've used all of our dining money! Thus, we
can print out what we've chosen in chosen . [Note that throughout all of this, chosen was being
updated accordingly due to the fact that it's a reference. This means, no matter which stage we're at,
which recursive call we're on, we can still access the same chosen .]

Great! We've reached an outcome. But we have so many other options to explore, how will we
manage that if we're at a dead end? Let's hit CTRL+Z and unchoose the last cookie we chose to buy.

Recall that with recursive calls, once we reach a base case, we return to the instance that called the
method again. This means that we go back to when dollarLeft = 1 . In that method, we added to
chosen as a part of our choose (chosen = [1, 1, 1]). Then after exploring, we return and know
that at that point whatever was most recently added either worked out or it didn't.

We, in this present recursive call, don't have to worry about dealing with that; we need to focus on
unchoosing so we're able to choose again!

Let's instead choose to buy a $2 burger from DubStreet.

Oof. Before: {chosen: [1, 1], output: [1, 1, 1]; dollarsLeft: 1}. After: {chosen: [1, 1, 2]; output: [1, 1, 1];
dollarsLeft: -1}.

Backtrack! It broke the conditions!

1 + 1 + 2 = 4, and 3 - 4 = -1. Thus, this combination isn't viable, so we shouldn't print anything to
output, and instead return to the recursive all that called it, then unchoose it.

The tree stops after a path meets the base case. There are 4 viable outcomes, and 6 nonviable ones.

As seen above, we repeat this pattern for all choices, to create this decision tree! All the choices in red
indicate an outcome where we're in debt and thus stopped exploring. All the choices in green indicate
an outcome where we used all our dining money, outputted the combination that got us there, and
stopped exploring.

And �nally, all the choices in white were places where are able to make more choices until we are
either in the green or the red.

� Main Points
The choose-explore-unchoose pattern is instrumental in implementing recursive
backtracking.

We will repeat this pattern for all choices to make a decision tree. We will �rst choose, then
explore, then backtrack aka unchoose once we have gone too far and have an invalid
solution.

As it is a pattern, you will �nd yourself writing very similar sca�olds within your code.

However, the hardest part about recursive backtracking and recursion in general is knowing
when and how to stop, as well as what each call is doing!

arrangements

Write a method named arrangements that accepts a List of names as a parameter and prints out
all of the possible arrangements of the people in a line. For example, suppose a List called list
stored the following names: ["Oscar", "Sumant", "Jun"] Then a call of arrangements(list)
should produce the following output:

[Oscar, Sumant, Jun]
[Oscar, Jun, Sumant]
[Sumant, Oscar, Jun]
[Sumant, Jun, Oscar]
[Jun, Oscar, Sumant]
[Jun, Sumant, Oscar]

The order in which you show each of the arrangements does not matter. The key thing is that your
method should produce the correct overall set of arrangements as its output. You may assume that
the list passed to your method is not null and that the list contains no duplicates.

