
Pre-Class Work 11: Exhaustive Search

Exhaustive Search [Background Reading]

� Motivation
Let's say we're bored one day, extremely extremely bored, and wanted to �nd out what 3-digit
numbers we could make with digits 1, 2, and 3. Okay!

111, 112, 113, 121, 122, 123, 131...

Wow. That quite honestly made us more bored than when we started. But we have no choice except
to exhaustively search every single possible option to �nd every single one that works. There must
be an easier way to do this! We're computer scientists! We can automate anything! There's something
repetitive about this, no?

For every single digit place, there can either be a 1, 2, or 3; then we have to combine that with all
combinations of another digit place. How about some for-loops then? What about if they're nested?

for (int d1 = 1; d1 <= 3; d1++) { // hundreds place
 for (int d2 = 1; d2 <= 3; d2++) { // tens place
 for (int d3 = 1; d3 <= 3; d3++) { // ones place
 System.out.println("" + d1 + d2 + d3);
 }
 }
}

This looks pretty good! The inner-most loop goes through all options for the ones place while the
other two digits remain the same, then once the inner-most loop �nishes iterating, the middle-most
loop increments, then we're printing out all combinations where the tens place is 2, and so on and so
forth until the outer-most loop �nishes. If this printed out, it would look like:

111, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222, 223, 231, 232, 233, 311, 312,
313, 321, 322, 323, 331, 332, 333

� Decision Trees
However, the nested loops aren't super nice to look at, nor do they fully represent what's happening.
What is happening? Well, we're exploring a set of choices to be made (1st digit, 2nd digit, 3rd digit).

A better way to visualize this process is with decision trees! It shows a series of choices or decisions

and the potential outcomes, and is much easier on the eyes.

Here, there will be 3 levels for each potential choice + 1 level just for the start, so 4 levels in total.
Each choice has 3 possible decisions that could be made, one for each digit 1, 2, and 3. Then after
that decision has been made, you have another 3 possible decisions, all the way until all 3 digits have
been selected.

Therefore, there's a "branch" in the decision "tree" for each possible outcome, showing the series of
choices that have been made to get there.

Each level of the tree represents a particular stage of a series of choices, with the last level showing
the outcome.

Therefore, the total number of choices is the number of endpoints on the last level. With math, you
would be able to calculate the total number of combinations as such: 3 * 3 * 3 = 27 (count the last
level if you'd like to verify �).

Okay, you say. But what if.... We used recursion 😱 ?! Right on, let's see how that might work on the
next slide!

Exhaustive search comes in handy when we're attempting to �nd all possible combinations or
permutations given some type of limitation or conditions. It's useful for generating possibilities and
various outcomes.

� Main Points
We wanted to �nd out all 3-digit numbers we could make with 1, 2, and 3.

We started out by trying to do this by hand and exhaustively searching, but then we
developed an algorithm that involved nested loops to do this for us.

While this worked, nested loops were not super fun for us to look at, so we decided to visualize
this process with decision trees that show a series of choices or decisions and the potential
outcomes.

Exhaustive search is useful when we want to �nd all possible outcomes given some limitation
or conditions.

Anatomy of Exhaustive Search [Background Reading]

How would exhaustive search be implemented recursively? Well, as we saw with recursion, we
have lots of cases to break down. Firstly, what would our base case be? What would be our general
case? And how would we be able to keep track of all of the combinations we've already tried?

We'll break down the code in a bit, but this is how it would be implemented:

public static int count = 0;
public static void main(String[] args) {
 printNums();
 System.out.println(count);
}

// Prints out all 3-digit combinations of
// 1, 2, and 3
public static void printNums() {
 printNums("");
}

private static void printNums(String soFar) {
 if (soFar.length() == 3) {
 count++;
 System.out.println(soFar);
 } else {
 printNums(soFar+ "1");
 printNums(soFar+ "2");
 printNums(soFar+ "3");
 }
}

As with many recursive methods, there is a public and private pair. The public method calls its
recursive private partner method and in the private method, there's the base case and a recursive
case. The base case is when the string soFar is of length 3, meaning that a 3-digit combination is
ready to be printed! The recursive case is when there are still digits left to be chosen for a
combination.

� soFar

Before we break down the recursive case, let's go over what soFar is. From what we know about
scope, after a for loop ends or a method ends, whatever variables or data that was created within
those curly braces will get garbage collected by Java. But we need to remember what choices have
already been made, or in this case, which number we've already chosen for the other digits.

How will we manage that, if everything we create to remember what we've chosen is gone by the

time we try a di�erent combination?

Note that whenever we pass a primitive data type variable or a String, it is passed-by-value and
simply a copy of the data. In this case, an empty String called soFar is being used to keep track of
the combinations, where every single new digit that we try is then appended to soFar .

� Breaking Down the Recursive Case

Now, let's break down what is going on in the recursive case by going through what happens when it
runs for the �rst time.

The very �rst recursive call to printNums has soFar = "1" , then goes into the else case as
soFar.length() != 3 . It then calls printNums again, however, soFar is now "11" . It once again
goes to the else case then calls printNums with soFar = "111" . Finally, we hit the base case and
"111" gets printed out. Then we go all the way back to when we called printNums with soFar =
"11" , and move onto the next line where printNums is called with soFar = "112" .

This occurs again and again, until all of the combinations are printed out and we �nish executing the
very �rst printNums that we called.

� Preview: Choose-explore-unchoose

In the following lesson, we'll introduce a recursion pattern called choose-explore-unchoose. Let's
see how it can be used for exhaustive search!

public static void main(String[] args) {
 printNumsCEU();
 System.out.println(count);
}

// Prints out all 3-digit combinations of
// 1, 2, and 3 using the
// choose-explore-unchoose pattern
public static void printNumsCEU() {
 printNumsCEU(new ArrayList<Integer>());
}

private static void printNumsCEU(List<Integer> chosen) {
 if (chosen.size() == 3) {
 count++;
 System.out.println(chosen);
 } else {
 for (int i = 1; i <= 3; i++) {
 chosen.add(i);
 printNumsCEU(chosen);

 chosen.remove(chosen.size() - 1);
 }
 }
}

Everything has a similar structure, however now the recursive case has changed, and instead of a
String soFar keeping track of the past combinations, there's a list called chosen .

Before we break down the recursive case, let's go over what chosen is. Again recall that we need
some type of way to keep track of the current combination. Remember that with soFar , as it was a
String, we were passing around a copy.

Here, we instead pass around a reference to chosen , which gets updated within the recursive case.
But what is going on in the recursive case?

� Choose-explore-unchoose Recursive Case

Let's break it down. The for-loop explores all possible options for each digit in the 3-digit combination
(1, 2, or 3). Within the loop, we choose the digit we'll be trying by adding it to chosen so that we
remember the current digits in the combination that we're trying. Then we call tryCombination to
try the other digits in the combination.

Through recursion, it goes through all the other digits left in the combinations to explore other
options. Then at the very end, we need to reset the combination to retry another one! Back when we
had soFar , we simply reverted back to a version of soFar that did not have the new digit appended.

But with chosen, we need to manually revert it. Thus, we unchoose the most recently added digit
from chosen , and the loop goes to another number.

Woah. That was a lot. Don't worry. This choose-explore-unchoose pattern will be explored more in
the next lesson of recursive backtracking.

� Main Points
In exhaustive search, the base case represents the simplest case that stops recursion.

For example, in our search for 3-digit combinations, the base case occurs when we have a
combination of length 3.

The recursive case is when the method calls itself with arguments we modi�ed so we can
progress towards the base case.

We want to consider all possible choices for the next element in the number combination.

We want to use a variable to keep track of the choices we made during exploration so that the
recursive function to remember and update the current state of the problem.

In printNums , the tracker variable was soFar ; in printNumsCEU , the tracker variable was
chosen

The choose-explore-unchoose pattern involves choosing an option, exploring it recursively,
and then unchoosing it to explore other options so we can e�ectively manage our
combinations!

Exhaustive Search Example

This code slide does not have a description.

printNumbers

Write a recursive method printNumbers that prints all of the integers that are composed of two 2's
and two 5's on separate lines. One example output to printNumbers() is shown below.

2255
2525
2552
5225
5252
5522

Below is the decision tree:

