
[In Class] Lesson 7 (4/21)

Extending LinkedIntList: add(index, value)

Activity

Write a new method inside the LinkedIntList class add(int index, int value) that adds a new
ListNode to the list at the given index. For example, consider "myList" before and after a call to
add(1, 4) If passed an invalid index throw an IllegalArgumentException .

myList = front > 1 > 2 > 3
myList.add(1, 4);
myList = front > 1 > 4 > 2 > 3

Meet the LinkedIntList class

In previous lessons we have been directly manipulating objects of the ListNode type. Now we are
going to construct a new class that holds a reference to the �rst ListNode in a collection of unknown
number of ListNodes and includes various behavior that manages our "Linked List" functionality.

Consider the LinkedIntList code shown here. You can see it has a �eld "front" of type ListNode .
This is a reference to the �rst ListNode , which in turn may link to another ListNode , which may link
to another ListNode and so on. We need to add methods to this class to manipulate a list like there
where our only entry point is a reference to the �rst node.

We have previously been using the ListNode class as a separate �le, but now we are going to
include it as a "static inner class" to the LinkedIntList class. This is a way to make an object
de�nition available to a given class without having to use "import" statements. We typically use this
style of syntax for small classes like ListNode that are only going to be used by one class like
LinkedIntList .

Activity:

We have the same printList method from Wednesday's lesson, but have removed the parameter.
This implementation is currently broken, can you �x it to make sure our list remains intact?

Extending LinkedIntList: remove(value)

In the pre-class work and section you explored numerous ways to manipulate a collection of
ListNodes linked from a single "front" pointer. Some key things to remember:

When looping over a LinkedList, create a temporary pointer that you will use to examine your
list "safely" - i.e. without destroying the list. We will call this pointer curr for "current", you can
think of curr as similar to i in a for loop representing the current iteration of the loop or
your "current" place in the list.

To loop over a list we typically use while loops where we test if the loop pointer or " curr "

while (curr != null) // loop to end of list

while (curr.next != null) // stop one early to make edits

LinkedLists can be tricky because the code to manipulate the �rst, middle and last nodes can be
di�erent, so always be sure to check if your code handles an empty list (front == null), a list
with just one node (front.next == null), manipulating the �rst node, a node in the middle
and the very last node.

Activity

Write a new method inside the LinkedIntList class remove(int value) that removes the
ListNode at the given index. If the value given doesn't exist the list should be unchanged. For
example, consider the below list myList before and after a call to remove(-3) .

Hint: don't forget to update the size �eld.

myList = front -> 16 -> -3 -> 27
myList.remove(-3);
myList = front -> 16 -> 27

