
[In Class] Lesson 15 (11/27)

What is "runtime"?

You're �nally near the the end of the Introduction to Programming course series, so you have learned
lots of di�erent ways to solve any given problem. Now that you have a full tool box, it's time to learn
how to pick the best tool for the job.

For example, we've learned about a number of di�erent data structures such as ArrayIntList,
LinkedIntList and IntTree. Each of these structures o�ers a way to add a value to the collection, access
a value in the collection and remove a value from the collection. However, based on their design and
your particular situation each of these functions may have very di�erent runtimes.

We can use a timer to measure how long code takes to run, but this number will be highly variable
based on the hardware and state of the computer the code is running on. You can use the code
provided here to see how long it takes to add numbers to the di�erent data structures we've learned
about on your computer.

See graph from class here.

Intro to Runtime Analysis

As you've seen the data we get from timing code execution can be di�cult to work with, so we need a
conceptual way to assess how long it will take code to run independent of machine speci�cs.

Runtime analysis is a way of approximating how many instructions will be executed by a piece of
code. We can use these approximations to compare di�erent pieces of code based on how e�cient
they are. When approximating the instructions for code we assume all basic actions take a count of
"1". We count the number of instructions in relation to the number of inputs or "n".

For example, consider the following code:

public static void loopAnalysis(int n) {
 for (int i = 0; i < n; i++) {
 System.out.println("some basic action");
 }
}

Because this loop runs "n" times and executes 1 instruction each time, if n is 10 there will be
approximately 10 instructions, if n is 100 there will be approximately 100 instructions and so on...
Thus the runtime analysis of this code would be that is runs in linear time because the number of
instructions are linearly related to the number of inputs.

Consider the code examples shown here. Approximate the number of instructions for a given data
set then relate that approximation to the number of inputs.

Complexity Classes

The reason we only care about the approximate number of instructions executed by code is because
the time it takes to run a single instruction is so small that getting a precise number doesn't give us
that much more insight than the approximation.

When doing our analysis instead of focusing on counting the speci�c number of instructions, we
instead only need to �gure out the complexity class. In our previous examples, we met three
complexity classes:

Constant - - runtime is independent of the size of input - no repeating control structuresO(1)
Linear - - runtime is directly corelated to the size of input - single loop over inputO(n)

Quadratic - - runtime is squared corelated to the size of input - nested loopO(n)2

See graph from class here

Let's explore another complexity class thanks to Trees.

Logarithmic - - runtime scales sub-linearly based on input sizeO(log(n))

And many many more! You can imagine there are an in�nite number of polynomial classes ,
 and so on. A couple other common runtimes that show up in a lot of applications:

O(n)3

O(n)4

Loglinear - - runtime of many algorithms to sort dataO(n log(n))
Exponential - - runtime of many recursive-backtracking-algorithms that have choose-
explore-unchoose behavior

O(2)n

Common Complexity Classes for Data Structures

One of the major bene�ts of spending this quarter implementing all of the foundational data
structures, is that you can always understand what has to go on "under the hood" to complete an
operation. It takes some practice to reason about data structure operations in terms of complexity
classes, so we provide a reference sheet for common operations on Java's implementations of these
data structures and their runtimes.

ArrayList

add(value) (appending add) - (most of the time except when resizing)O(1)

add(index, value) - O(n)
get(index) - O(1)

set(index, value) - O(1)

remove(value) - O(n)

remove(0) (remove from front) - O(n)
indexOf(value) - O(n)

contains(value) - O(n)

LinkedList

add(value) - O(1)
Java's linked list actually can do fast appending add since they also store a
reference to the tail of the list

add(index, value) - O(n)

get(index) - O(n)

set(index, value) - O(n)
remove(value) - O(n)

remove(0) (remove from front) - O(1)

indexOf(value) - O(n)

contains(value) - O(n)
TreeSet

add(value) - O(log(n))

remove(value) - O(log(n))

contains(value) - O(log(n))
N/A Operations

add(index, value) - N/A

get(index) - N/A

set(index, value) - N/A

remove(0) (remove from front) - N/A

indexOf(value) - N/A

HashSet

add(value) - O(1)

remove(value) - O(1)

contains(value) - O(1)

N/A Operations

add(index, value) - N/A

get(index) - N/A

set(index, value) - N/A

remove(0) (remove from front) - N/A

indexOf(value) - N/A

