
[In Class] Lesson 13 (10/13)

Meet Binary Trees

In the pre-class work you were introduced to a new data structure called the binary tree. Like Linked
Lists, Binary Trees are a structure made up of a collection of connected nodes, however instead of
each node holding the reference to one other node, "next", binary tree nodes hold two references,
"left" and "right". You can see we are using a static inner node class just like we did previously for
LinkedLists.

Since each node can have up to two references we get a branching structure like so:

We will refer to the top level node as the overallRoot. In our example here the overallRoot has two
child nodes, one to the left and one to the right. These nodes are called branch nodes as they
themselves have children. The bottom level of nodes who have no children are called leaf nodes.
Computer scientists really love the tree analogy, even though these trees are upside down.

In the pre-class work you saw a constructor that directly set the left and right references, but this

approach won't easily scale or adapt to trees of varying size or shape. It might be di�cult to see how
to use a loop to construct a branching structure like this, but we can see how each tree is made up of
smaller sub-trees. This repeating pattern of sub trees within sub trees lends itself well to recursion!

Traversing a tree

Again like Linked Lists, because Binary Trees are made of nodes, we need a way to traverse them
without using indices and only by following references.

In the preclass work you wrote the method size to traverse the tree and count the number of
nodes. Note the structure of this solution: public/private pair with an IntTreeNode parameter, a base
case when the IntTreeNode parameter is null , a recursive case that traverses down node.left
and node.right .

How can you adapt this code to complete the traversal method?

