
[In Class] Lesson 11 (11/6)

Review: Permutations

In the pre class work you were shown some examples of how to use exhaustive search to produce
all possible combinations, or "permutations", of the three digits 1, 2 and 3.

How can you extend this code to produce all combinations of 1, 2, 3 and 4?

How can you extend this code to be able to produce all combinations of digits 1 through 9 based on a
given int parameter?

Pick the lock

Assume for a moment, you are a dishonest man.

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is
disabled in your browser.

Or perhaps assume you are the type of person who commonly forgets the combination to your
padlock. The only way to get a lock open to which you do not have the combination would be to try
every single possible combination until you �nd the right one.

This lock requires a combination of 4 digits, each of which may be the value of 0 - 9. Using exhaustive
search and recursion write the code to produce all possible combinations to try.

Extension: How much you change your code to pick this lock instead? This lock's combination
requires 3 numbers, each of which can range from 0 - 39.

Smudged Phone Number

It's Friday night and you spot a cutie across the room at a party. You just learned about recursion in
CSE 123 so you're feeling extra smart and capable, so you walk over and strike up a conversation.
You two hit it o� and you work up the courage to ask for their number. They grab a napkin, scribble
something down and hand it to you. You're so excited you grab the napkin and quickly stu� it into
your pocket. You leave the party feeling on top of the world- until Saturday morning you wake up and
look at the napkin. You realize in your haste to make a smooth exit you smudged a couple of the
numbers your crush wrote down and now you can't read them. What do you do?

^ according to the internet this is a real thing that happened, shout out to Jackie for giving us a good
exhaustive search problem!

Write a program that will produce all possible combinations of a phone number that is missing 2
numbers.

Guess the password

The challenge here seems simple: you need to guess a 4-bit password.

The problem is that you know the system might lock you out after some number of incorrect
attempts! Thankfully, you managed to watch someone keying in the password from a distance, so
you have a pretty good guess as to what it is.

You start with a best-guess at what the password is, and a con�dence rating between 0 and 1 for each
of the bits. A higher con�dence rating means you are more con�dent in the bit at this position.
For example:

boolean[] passwordGuess = {false, true, true, false, false, true, false, true};
double[] confidenceRatings = {0.95, 0.76, 0.62, 0.92, 0.64, 0.68, 0.52, 0.93};

Would mean that you are most con�dent in the 0th bit (you are very sure it was 0 !) and you are least
con�dent in 7th bit (you think it was probably a 0 but it could de�nitely have been a 1 !)

Goal:

Generate every possible password, in the order of most likely guess to least likely guess. Use a
recursive strategy!

Hint: the most likely password is just... passwordGuess :)

A good starting point would be to consider what the �rst, second, and third guesses should be. Then
think about how your recursive strategy should work.

Background:

This is a simpli�ed version of an actual problem that cropped up in research done here at UW! In the
real scenario we were not guessing a password, but a cryptographic key that was 128 bits long. We
did actually have con�dence ratings for our guesses of each bit, but they were gained from
measuring tiny di�erences in electrical behavior of a circuit, not from looking over someone's
shoulder.

Extra challenges (completely optional, fun extensions):

Because the key was so long, checking every single one was impossible (there would be 2^128 of
them!) so we determined a maximum number of bits we would ever try the inverse of (say, 3). If you

are interested, consider how you might rewrite you solution to try every possible password, but only
ever allowing 2 bits to be changed, still in order of con�dence!

You'll note that all of the con�dence ratings are >= 0.5 . Why is that?

Another real challenge we had was that our method for guessing bits had a 50% chance to always be
wrong for every bit. (That is, if it guessed 101110, the right key would be 010001). How would you
modify your search to generate these guesses as well, where you consider the inverse of each guess
to be just as likely as that guess?

If the correct key is our last guess, it is easy to calculate how many tries we will make: 2^n where n is
the length of the password/key. (So for our 4-bit password, we'd try all 2^4 possibilities.) Trickier is
computing how many guesses it will take for some password in the middle. Consider how to
compute the number of tries your implementation will make for a given password (e.g. pick one at
random, and �gure out how many recursive calls will happen!)

