
Programming Assignment 2: Disaster Relief

Speci�cation

(This assignment was partially inspired by Keith Schwarz's 2020 Nifty Assignment.)

Background
When natural disasters strike, governments, relief organizations, and even individual donors must 
often wrestle with how best to allocate available resources to help those who have been a�ected. 
This is generally a very complex decision, balancing countless logistical, economic, political, and other 
factors. One particular challenge is that di�erent geographic areas can require di�erent �nancial or 
other resources for relief, even if the populations of the areas are similar. (Or, put another way, the 
cost to help a single person after a disaster is not always constant.) Organizations sometimes have to 
make di�cult decisions in the hope of helping as many people as possible with the available 
resources.

In this assignment, you will implement a system to determine how to allocate a budget of relief 
resources to help as many people as possible.

Important note: While our simulation will focus on helping the greatest number of people for the least 
amount of money, this is an oversimpli�cation of the problem of allocating resources in the wake of a disaster, 
and may not necessarily be the best approach. For one discussion of this problem, see this talk from UC 
Berkeley professor Rediet Abebe.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

De�ne a solution to a given problem using a recursive approach

Write functionally correct recursive methods

Produce clear and e�ective documentation to improve comprehension and maintainability of a 
method

Write methods that are readable and maintainable, and that conform to provided guidelines for 
style and implementation

Required Methods
For this assignment, you will implement only a single method:



public static Allocation allocateRelief(double budget, List<Location> sites)

This method takes a budget and a list of Location  objects as parameter. The method will compute 
and return the allocation of resources that will result in the most people being helped with the given 
budget. If there is more than one allocation that will result in the most people being helped, the 
method will return the allocation that costs the least. If there is more than one allocation that will 
result in the most people being helped for the lowest cost, you may return any of these allocations.

For the purposes of our simulation, we will assume that providing relief to a location is atomic, 
meaning that either all people in the location are helped and the full cost is paid, or no relief is 
allocated to that location. We will not deal with the possibility of providing partial relief to a particular 
location.

You should implement your allocateRelief  method where indicated in the provided Client.java  
�le. You may also implement any additional helper methods you might like. (For example, you will 
likely want to implement a public-private pair for allocateRelief .)

Location  class

In our system, we will represent areas that may be allocated relief funds with the following Location  
class (comments and some methods are elided here; see the full Location  class in the coding 
challenge slide for these):

import java.util.*;

public class Location {
    private String name;
    private int population;
    private double cost;

    public Location(String name, int pop, double cost) {
        this.name = name;
        this.population = pop;
        this.cost = cost;
    }

    public int getPopulation() { return this.population; }

    public double getCost() { return this.cost; }

    public String toString() {
        return name + ": pop. " + population + ", cost: $" + cost;
    }

Allocation  class

We will represent a group of locations that will receive resources with the following Allocation  
class (comments and some methods are elided here; see the full class in the coding challenge slide 



for these):

import java.util.*;
public class Allocation {

    private Set<Location> locations;

    private Allocation(Set<Location> locations) {
        this.locations = new HashSet<Location>(locations);
    }

    public Allocation() {
        this(new HashSet<Location>());
    }

    public Set<Location> getLocations() {
        return new HashSet<Location>(locations);
    }

    public Allocation withLoc(Location loc) {
        if (locations.contains(loc)) {
            throw new IllegalArgumentException("Allocation already contains location " + loc);
        }
        Set<Location> new_locations = new HashSet<Location>(locations);
        new_locations.add(loc);
        return new Allocation(new_locations);
    }

    public Allocation withoutLoc(Location loc) {
        if (!locations.contains(loc)) {
            throw new IllegalArgumentException("Allocation does not contain location " + loc);
        }
        Set<Location> new_locations = new HashSet<Location>(locations);
        new_locations.remove(loc);
        return new Allocation(new_locations);
    }

    public int totalPeople() {
        int total = 0;
        for (Location loc : locations) {
            total += loc.getPopulation();
        }
        return total;
    }

    public double totalCost() {
        double total = 0;
        for (Location loc : locations) {
            total += loc.getCost();
        }
        return total;
    }
}



Expand

The two methods withLoc  and withoutLoc can be used to add and remove (respectively) a 
Location  to/from an Allocation . Notice that these methods return a new Allocation  rather than 
modifying an existing Allocation , similar to how String  methods like substring  or toUpperCase  
return a new String  rather than modifying an existing one. Make sure you write your code 
accordingly.

Client Program
We have provided a client program that will allow you to test your allocateRelief  implementation. 
This client provides two methods that might be useful.

public static List<Location> createSimpleScenario()

Manually creates a simple list of locations to represent a known scenario.

We have provided one example in the client code, and a few others in the examples 
below.

public static List createRandomScenario(int numLocs, int minPop, int maxPop, double 

minCostPer, double maxCostPer)

Creates a scenario with numLocs  locations by randomly choosing the population and cost of 
each location.

Populations will be chosen between minPop  and maxPop  (inclusive)

Costs will be generated by choosing a random value between minCostPer  and 
maxCostPer  (inclusive) and multiplying that cost by the chosen population.

You can modify createSimpleScenario  with di�erent Location  objects to test your 
implementation in scenarios of your own design, and/or you can generate random scenarios to try 
using createRandomScenario . 

Click "Expand" below to see some example scenarios, their results, and visualizations of the decision 
trees.

Example 1:

Input:

double budget = 1000;

public static List<Location> createSimpleScenario() {
    List<Location> result = new ArrayList<>();
    result.add(new Location("Location #1", 50, 1000));
    result.add(new Location("Location #2", 100, 1000));
    return result;
}  



decisiontree1.pdf

Expand

decisiontree2.pdf

Expand

Output:

Result: 
  [Location #2: pop. 100, cost: $1000.0]
  People saved: 100
  Cost: $1000.00
  Unused budget: $0.00

Decision Tree:

Example 2:

Input:

double budget = 2000;

public static List<Location> createSimpleScenario() {
    List<Location> result = new ArrayList<>();
    result.add(new Location("Location #1", 50, 500));
    result.add(new Location("Location #2", 100, 700));
    result.add(new Location("Location #3", 60, 1000));
    return result;
}  

Output:

Result: 
  [Location #3: pop. 60, cost: $1000.0, Location #2: pop. 100, cost: $700.0]
  People saved: 160
  Cost: $1700.00
  Unused budget: $300.00

Decision Tree:

Example 3:

Input:

double budget = 2000;

public static List<Location> createSimpleScenario() {



decisiontree3.pdf

    // Sample Locations as Example 2 but Location 3 has a population of 50
    List<Location> result = new ArrayList<>();
    result.add(new Location("Location #1", 50, 500));
    result.add(new Location("Location #2", 100, 700));
    result.add(new Location("Location #3", 50, 1000));
    return result;
}  

Output:

Result: 
  [Location #2: pop. 100, cost: $700.0, Location #1: pop. 50, cost: $500.0]
  People saved: 150
  Cost: $1200.00
  Unused budget: $800.00

Decision Tree:

Note: The dashed lines in the decision tree represent the best set of Location  objects that is being returned.

Note: The ordering of elements in your set does not matter. For example, a set containing {Location #1: 
pop. 100, cost: $1000.0, Location #2: pop. 50, cost: $200.0}  and a set containing {Location #2: 
pop. 50, cost: $200.0, Location #1: pop. 100, cost: $1000.0}  are identical.

You may create your own client programs if you like, and you may modify the provided client if you 
�nd it helpful. However, your allocateRelief  method must work with the provided client 
without modi�cation and must meet all requirements below.

Implementation Requirements
To earn a grade higher than N on the Behavior and Concepts dimensions of this assignment, your 
algorithm must be implemented recursively. You will want to utilize the public-private pair 
technique discussed in class. You are free to create any helper methods you like, but the core of 
your algorithm (speci�cally, building and evaluating possible allocations of relief funds) must be 
recursive.

You are not required to avoid trying permutations. Since the Allocation  class does not make a 
distinction between adding Location s A, B, C versus B, C, A, there will not be a di�erence in cost or 
results. Both solutions that intentionally avoid trying permutations, and solutions that try 
permutations are OK.

Development Strategy
We recommend you start by developing a version of the allocateRelief  method that simply prints 



all possible allocations within the speci�ed budget. This will be easier than trying to �nd the optimal 
allocation and will produce much of the code necessary for the �nal version. Then, once you have 
successfully implemented this version, you can modify the code to �nd and return the allocation that 
helps the most people as described above.

There is an OPTIONAL slide to help develop such a method. It is not required nor is it graded. Please 
make sure to transfer whatever work was completed on the slide into the actual Disaster Relief Code 
Challenge slide!

The Scrabble Helper example from Lesson 12 will be helpful to you in completing this assignment. 



OPTIONAL – Generate Options

This code slide does not have a description.



Disaster Relief

This code slide does not have a description.



Testing Comprehension + Spec

Question 1

Question 2

In this assignment, you will not only design but also implement your very own unit tests! Before we 
talk speci�cally about testing in this assignment, here are some resources for a refresher on jUnit and 
writing unit tests:

Testing Comprehension in Mini Git

Testing Section

jUnit Cheat Sheet

For this assignment, you will write three di�erent unit tests, that will test di�erent cases for your 
allocateRelief  method.

Some of these inputs do not have obvious or intuitive outputs... this is what the spec is for! 

If our parameters look like:

budget: 500
sites: 
    name: Location #1, population: 100, cost: 400
    name: Location #2, population 150, cost 600

Which Location s should our Allocation  contain?

Location #1

Location #2

Location #1, Location #2

No Location

If our parameters look like:

budget: 500 
sites: 



Question 3

Question 4

    name: Location #1, population: 150, cost: 400 
    name: Location #2, population 100, cost 450 

Which Location s should our Allocation  contain?

Location #1

Location #2

Location #1, Location #2

No Location

If our parameters look like:

budget: 500 
    sites: 
        name: Location #1, population: 150, cost: 450 
        name: Location #2, population 150, cost 400 

Which Location s should our Allocation  contain?

Location #1

Location #2

Location #1, Location #2

No Location

Now, you will implement unit tests covering two of the above cases! On the "Disaster Relief" tab, 
under the �le browser, you should �nd a �le titled "Testing.java". We have provided you with the test  
for the �rst case. Fill in the implementation for the other two cases. Then, when you press "Check," 
you should see your beautiful tests! How do you feel right now?



Amazing

Incredible

Astounding

Magni�cent



Re�ection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

The following questions will ask you practice metacognition to re�ect on the topics covered on this 
assignment and your experience completing it. For each question, focus on your plan and/or process 
for working through the assignment along with the CS concepts. Think about things like how you 
organized your working time, what sorts of things tended to go wrong, and how you dealt with those 
errors or mistakes.

Please answer all questions.

Describe one other strategy that could have been used to choose an allocation instead of "help the 
most people." How would using that strategy have changed your implementation?

Do you think any algorithmic approach, whether the one you implemented, the one you described 
above, or another, should be used to determine how to allocate relief funds in the wake of a disaster? 
Why or why not?

Describe how you went about testing your implementation. What speci�c situations and/or test cases 
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?



Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be 
close.)

Was any part of the speci�cation or requirements unclear? If so, which part(s), how was it unclear, 
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if 
you would like a response!)



� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your 
work.

I attest that the work I am about to submit is my own and was completed according to the course 
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any 
outside resources, they are allowed and have been properly cited. If I have any concerns about this 
policy, I will reach out to the course sta� to discuss before submitting.

(Type "yes" as your response.)


