
Programming Assignment 1: Mini-Git

Speci�cation

Background
Version control systems are software features or programs designed to track changes to documents or
sets of documents over time. In most systems, each time changes are made to the documents being
tracked, a new version or revision is logged. Usually some additional information, called metadata, is
also tracked along with each revision. This metadata can include a timestamp for when the changes
were made, one or more authors of the changes, comments or notes about the changes, and/or
many other types of information. Version control systems also typically provide a way to review the
history of the documents being tracked, along with operations to revert to previous points in history if
necessary. The history tracking features of Google Docs are an example of a version control system.

Version control systems that are designed speci�cally for tracking source code for computer
programs are often called source control systems and may include additional features useful for
tracking source code. These features may include associating certain types of �les with particular
programming languages or running automated tests each time a new revision is created. One
popular source control system in wide use today is Git, which was developed by Linus Torvalds (who
also created the Linux operating system) and initially released in 2005.

In this assignment, we will implement our own, simpli�ed version of a version control system similar
to Git, using linked-lists.

Note: Version control systems typically need to address at least two signi�cant problems: how to track and
manage the metadata for the revisions that make up the version history, and how to represent and track the
actual changes to the documents themselves. We will focus only on the �rst problem (tracking metadata and
history); for more information on how Git handles tracking the changes, see the free, online book Pro Git.

System Structure
In our system, as in Git, a set of documents and their histories are referred to as a repository. Each
revision within a repository is referred to as a commit. You will implement a class called Repository
that supports a subset of the operations supported by real Git repositories. (We will not be dealing
with features such as branching or remote repositories. We will assume histories are fairly linear and
mostly take place in a single, local repository.)

We will represent commits with following provided class. You must not modify this class in any
way.

public static class Commit {
 public final long timeStamp;
 public final String id;
 public final String message;
 public Commit past;

 public Commit(String message, Commit past) {
 this.id = getNewId();
 this.message = message;
 this.timeStamp = System.currentTimeMillis();
 this.past = past;
 }

 public Commit(String message) {
 this(message, null);
 }

 @Override
 public String toString() {
 SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd 'at' HH:mm:ss z");
 Date date = new Date(timeStamp);

 return id + " at " + formatter.format(date) + ": " + message;
 }

 private static String getNewId() {
 return UUID.randomUUID().toString();
 }
}

Each commit consists of a unique identi�er, a message describing the changes, the general time the
commit was made, and a reference to the immediately previous commit. In our representation,
identi�ers will be strings.

Note: You may see some code you're unfamiliar with (namely the SimpleDateFormat , Date classes and
UUID), but that's okay! You are not required to understand these, just know that SimpleDateFormat and
Date allow us to print out the current date and UUID is used to generate random, unique ids for our
commits. Feel free to explore these classes or ask the course sta� if you'd like to learn more about them!

As we eventually did with our LinkedIntList and LinkedNode classes, we will implement the
Commit class as a public static inner class within the Repository class. (Ideally, we would make this
class private, but we leave it public for ease of testing.)

Notice that the id and message �elds of the Commit class are all final , meaning that you will not
be able to modify them. If you attempt to change the value of these �elds after they have been
initialized, you will get a compiler error such as the following:

error: cannot assign a value to final variable message

Required Operations
Your Repository class must include the following methods:

public Repository(String name)

Create a new, empty repository with the speci�ed name

If the name is null or empty, throw an IllegalArgumentException

public String getRepoHead()

Return the ID of the current head of this repository.

If the head is null , return null

public int getRepoSize()

Return the number of commits in the repository

public String toString()

Return a string representation of this repository in the following format:

<name> - Current head: <head>

<head> should be the result of calling toString() on the head commit.

If there are no commits in this repository, instead return <name> - No commits

public boolean contains(String targetId)

Return true if the commit with ID targetId is in the repository, false if not.

public String getHistory(int n)

Return a string consisting of the String representations of the most recent n commits in this
repository, with the most recent �rst. Commits should be separated by a newline (\n)
character.

If there are fewer than n commits in this repository, return them all.

If there are no commits in this repository, return the empty string.

If n is non-positive, throw an IllegalArgumentException .

public String commit(String message)

Create a new commit with the given message, add it to this repository.

The new commit should become the new head of this repository, preserving the history
behind it.

Return the ID of the new commit.

public boolean drop(String targetId)

Remove the commit with ID targetId from this repository, maintaining the rest of the history.

Returns true if the commit was successfully dropped, and false if there is no commit that
matches the given ID in the repository.

public void synchronize(Repository other)

Takes all the commits in the other repository and moves them into this repository,
combining the two repository histories such that chronological order is preserved. That is, after
executing this method, this repository should contain all commits that were from this and
other , and the commits should be ordered in timestamp order from most recent to least
recent.

If the other repository is empty, this repository should remain unchanged.

If this repository is empty, all commits in the other repository should be moved into
this repository.

At the end of this method's execution, other should be an empty repository in all cases.

You should not construct any new Commit objects to implement this method. You may
however create as many references as you like.

synchronize Explained

Note that while the other operations are real Git ones, synchronize is not. synchronize is a great exercise,
but does not mirror any functionality a real git repository would ever want to do.

Since this operation is somewhat complicated, consider an example. Assume we have the following
two repositories with their own history:

Repository #1 (repo1)
f6df5ece-b614-4587-8c59-8530eb9c5f5e at 2023-07-02 at 18:28:39 PDT: Add initial scaffold
d3aa237c-0419-4fe8-b133-e4bd44f38f61 at 2023-07-02 at 16:25:43 PDT: Edit README
99eb454c-db6e-4a7e-ae01-e8ece007451b at 2023-06-30 at 03:45:12 PDT: Upload README

Repository #2 (repo2)
0f29d5e8-e79e-404e-8c3e-2e655e622a88 at 2023-07-01 at 12:04:28 PDT: Edit documentation
ea16b915-2f75-4648-9326-082b2beb4d3b at 2023-04-21 at 07:21:12 PDT: Upload documentation

Then, we synchronize Repository #2 into Repository #1 (repo1.synchronize(repo2)). Our
repositories would now have the following histories:

Repository #1 (repo1)
f6df5ece-b614-4587-8c59-8530eb9c5f5e at 2023-07-02 at 18:28:39 PDT: Add initial scaffold
d3aa237c-0419-4fe8-b133-e4bd44f38f61 at 2023-07-02 at 16:25:43 PDT: Edit README
0f29d5e8-e79e-404e-8c3e-2e655e622a88 at 2023-07-01 at 12:04:28 PDT: Edit documentation
99eb454c-db6e-4a7e-ae01-e8ece007451b at 2023-06-30 at 03:45:12 PDT: Upload README
ea16b915-2f75-4648-9326-082b2beb4d3b at 2023-04-21 at 07:21:12 PDT: Upload documentation

Expand

Repository #2 (repo2)

Notice that Repository #1 now contains all of the commits, while Repository #2 is empty.
Additionally, the order of commits in Repository #1 is based solely on their time stamps, from most
recent to least recent. Since Repository #2 is now empty, we did not construct any new commits, only
rearranging the ones that were initially present.

Client Program & Visualization
We have provided a client program that will allow you to test your Repository implementation by
creating and manipulating repositories. The client program will directly call the methods you
implement in your Repository class and will show you the resulting changes to the repositories.
Click "Expand" below to see a sample execution of the client (user input is bold and underlined).

Welcome to the Mini-Git test client!
Use this program to test your Mini-Git repository implemenation.
Make sure to test all operations in all cases --
some cases are particularly tricky.

Available repositories:
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: create repo1
 New repository created: repo1 - No commits

Available repositories:
repo1 - No commits
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo1
Enter commit message: First commit!
 New commit: 0

Available repositories:
repo1 - Current head: 0 at 2023-10-25 at 06:53:42 AEDT: First commit!
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo1
Enter commit message: Another commit.
 New commit: 1

Available repositories:
repo1 - Current head: 1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: history repo1
How many commits back? 2
1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
0 at 2023-10-25 at 06:53:42 AEDT: First commit!

Available repositories:
repo1 - Current head: 1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: create repo2
 New repository created: repo2 - No commits

Available repositories:
repo2 - No commits
repo1 - Current head: 1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo2
Enter commit message: Commit the third
 New commit: 2

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo1
Enter commit message: Fourth commit
 New commit: 3

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 3 at 2023-10-25 at 06:54:05 AEDT: Fourth commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: history repo1
How many commits back? 4
3 at 2023-10-25 at 06:54:05 AEDT: Fourth commit
1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
0 at 2023-10-25 at 06:53:42 AEDT: First commit!

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 3 at 2023-10-25 at 06:54:05 AEDT: Fourth commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: head repo1
3

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 3 at 2023-10-25 at 06:54:05 AEDT: Fourth commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo1
Enter commit message: one more commit
 New commit: 4

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: drop repo1
Enter ID to drop: 3
 Successfully dropped 3

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: history repo1
How many commits back? 3
4 at 2023-10-25 at 06:54:13 AEDT: one more commit
1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
0 at 2023-10-25 at 06:53:42 AEDT: First commit!

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: synchronize repo1
Which repository would you like to synchronize into the given one? repo2

Available repositories:
repo2 - No commits
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: history repo1
How many commits back? 6
4 at 2023-10-25 at 06:54:13 AEDT: one more commit
2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
0 at 2023-10-25 at 06:53:42 AEDT: First commit!

Available repositories:
repo2 - No commits
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: quit

In addition to this, you may (and are encouraged) to create your own client programs to to test out
your implementation on various cases. You may also modify the provided client if you �nd it helpful.
However, your Repository class must work with the provided client without modi�cation
and must meet all requirements above. To better understand what is happening, you can
reference these slides which visualize the repositories changing throughout the operations.

Testing
On this assignment, we are expecting you to write tests covering the methods that you complete. To
help facilitate this, we have provided you RepositoryTest , a sca�old �le that contains testing
examples you should reference when developing your own. Additionally, we have hidden the output
to the Ed test covering synchronize with the intention that you are writing correctness tests for this
method in particular. While you'll still be able to see the overall test result in Ed, you won't be able to
use the testing error messages to help you debug this method as you might have done before. Note

that this means there are no hidden tests, just hidden output for the synchronize tests.

� Implementation Guidelines
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

The speci�ed exceptions must be thrown correctly in the speci�ed cases. Exceptions should be
thrown as soon as possible, and no unnecessary work should be done when an exception is
thrown. Exceptions should be documented in comments, including the type of exception
thrown and under what conditions.

You should not construct any unnecessary Commit objects. Speci�cally, you should only
construct a Commit object when an entirely new commit is being created. If commits are being
removed or rearranged, you should manipulate the existing Commit objects. (You may create
as many references to Commit objects as you like.)

You should only need to construct Commit objects in the commit() method.

Your Repository class should have exactly two �elds as speci�ed below and they should be
declared private . You are not allowed to have any other �elds.

A reference to the head of the repository.

A �eld to keep track of the repository's name.

These methods can be quite challenging! It is valuable to take a look at resources from class,
particularly the LinkedIntList pre-class work, in-class activities, and section problems.
Notably, the weave problem in Section 8 will be a helpful starting point for implementing
synchronize .

You should not modify the id, message , or timeStamp �elds directly. In particular if you
run into the issue error: cannot assign a value to final variable message , it likely
means that you are attempting to modify a Commit object's data, instead of rearranging the
commits.

Some notes on synchronize :

Note that you will have to compare the time stamps to determine which order they
should appear in and that the timeStamp �eld is of type long . This is another primitive
that you haven't seen before, but you can essentially treat it as an int when doing your
comparisons. So, if you're trying to check if commit1 is chronologically earlier than
commit2 , you can check if commit1.timeStamp < commit2.timeStamp .

You must use an iterative approach to this assignment. While recursion is a powerful tool
that we'll explore later in the course, we're speci�cally assessing your ability to reason about
LinkedLists and the cases they generate.

Mini-Git

This code slide does not have a description.

Re�ection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

The following questions will ask you practice metacognition to re�ect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

Have you ever used a version control system before? If so, in what contexts? What problems did it
help you solve? If not, what are some situations in which it might be helpful to have a system like
this?

How do you think a system like Mini-Git would need to be di�erent if multiple people were
committing to the same repository? Would the system still work? Would it need to be managed
di�erently?

How do you think this assignment would have been di�erent if we asked you to implement Mini-Git
using an ArrayList of Commit objects instead of the linked structure we used? Which aspects would
have been easier? Which aspects would have been more di�cult? Which approach would you have
preferred if given the choice?

Describe how you went about testing your implementation. What speci�c situations and/or test cases
did you consider? Why were those cases important?

No response

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

Question 10

No response

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the speci�cation or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

Testing Comprehension

Question 1

Building o� of the last testing comprehension, below, you will �ll in JUnit tests that we have written
for Mini-Git. For syntax, take a look at the JUnit Cheat Sheet!

Here are some important ones for the problems below:

assertEquals(EXPECTED VALUE, TESTED VALUE, ERROR MESSAGE IF NOT EQUALS)

assertTrue(TESTED BOOLEAN VALUE, ERROR MESSAGE IF NOT TRUE)

For an example problem, let's take a look at testDropFalse , which tests the drop method in the
cases where it should return false . The �rst two parameters in both assertions have been taken out!

@Test
@DisplayName("drop - false case")
public void testDropFalse() {
 Repository r = new Repository("r");
 assertEquals(???,
 "drop did not return false for an incorrect id and an empty repository");
 r.commit("c1");
 assertEquals(???,
 "drop did not return false for an incorrect id and a non empty repository");

}

In order to �nd out what to put instead of the "???", let's take a look at each message: in both cases,
our test is outputting the message that drop is not returning false for an incorrect id (for some
reason).

In other words, the test was expecting false to be returned when an incorrect id is being tested for
the method drop . So, the answer for both of these is actually

false, r.drop("no id")

Where you can put any string instead of "no id" .

Now, here is a couple similar problems to try on your own... good luck!

Choose the correct type of assertion for the testToString method below:

Question 2

No response

Question 3

@Test
@DisplayName("toString")
//Dependencies: commit
public void testToString() {
 Repository r = new Repository("r");
 YOURANSWER("r - No commits", r.toString(),
 "toString on an empty repository incorrect"); //does not depend on commit
 String id = r.commit("c");
 YOURANSWER("r - Current head: " + id + ": c", r.toString(),
 "toString after a commit incorrect");
}

assertEquals

assertTrue

assertThrows

assertNotEquals

Fill in the parameters for the assertEquals below. Make sure to include the comma!

@Test
@DisplayName("Constructor")
//Dependencies: getRepoHead
public void testConstructor() {
 Repository r = new Repository("r");
 assertEquals(/* ANSWER HERE */,
 "getRepoHead does not return null directly after constructor");
}

Fill in the constructor exceptions method below. Recall that the second parameter in assertThrows is
called an executable, and is usually formatted like

() -> {/*CODE THAT SHOULD CAUSE EXCEPTION TO BE THROWN*/}

No response

For example, we could test that dividing by zero throws an exception using

assertThrows(ArithmeticException.class, () -> {int x = 5 / 0;}, "Dividing by zero did not throw an exception"

Fill in the two assertions below, with each answer on a separate line!

@Test
@DisplayName("Constructor Exceptions")
public void testConstructorExceptions() {
 assertThrows(IllegalArgumentException.class, /* ANSWER HERE */,
 "null passed into constructor does not throw exception");
 assertThrows(IllegalArgumentException.class, /* ANSWER HERE */,
 "\"\" passed into constructor does not throw exception");
}

JUnit Cheatsheet

Learning a new concept can be overwhelming so we've compiled a cheatsheet you can reference
while you write your own JUnit tests!

Creating a JUnit Test Class and JUnit Test Case
To create a JUnit test class, make sure you import org.junit.jupiter.api.* and static
org.junit.jupiter.api.Assertions.* . These will give you access to method annotations like
@Test and @BeforeEach and assertion methods like assertTrue() and assertFalse() .

import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;

public class ExampleTestClass {
 @Test
 public void yourTestCase() {
 // Assertion methods called here
 }
}

JUnit Method Annotations
Method annotations are used by JUnit so that JUnit knows how to treat your methods. Before you
write a method, you must attach a method annotation. This special syntax is then interpreted by JUnit
to know how to execute your method.

@Test : Turns a public method into a JUnit test case.

@Test
public void test() {
 ...
}

@Timeout(time) : Times the test such that the test will fail after time milliseconds. Thus, the code
must �nish execution before time . Note that you still need the @Test .

// Test will fail after 1000 ms
@Test
@Timeout(1000)
public void test() {
 ...
}

@BeforeEach : The method will be executed before each @Test

private int num; // This is a field

// This method will execute before each @Test
@BeforeEach
public void setUp() {
 num = 0;
}

@Test
public void test() {
 assertSame(0, num);
 num++;
 assertSame(1, num);
}

JUnit Assertion Methods
Assertion methods are the building blocks of JUnit and how you will write testing code inside your
test methods. When you use an assertion method, the result needs to match up with what the
assertion method expects, otherwise, your test will fail. Below are the most common types of
assertion methods that you will use:

assertTrue(test) : Fails if the test is false

@Test
public void test() {
 int x = 2;
 String s = "Hello World";
 assertTrue(true);
 assertTrue(x == 2);
 assertTrue(s.equalsIgnoreCase("Hello World"));
}

assertFalse(test) : Fails if the test is true

@Test
public void test() {
 int x = 2;
 String s = "Hello World";
 assertFalse(false);
 assertFalse(x != 2);
 assertFalse(s.contains("a"));
}

assertEquals(expected, actual) : Fails if the expected and actual are not equal

@Test
public void test() {

 String s1 = "Hello World";
 String s2 = "Hello World";
 String s3 = "Hello World";
 assertEquals(s1, s2);
 assertEquals(s2, s3);
 assertEquals(s3, s1);

 List<Integer> list1 = new ArrayList<>();
 List<Integer> list2 = new ArrayList<>();
 for (int i = 1; i <= 5; i++) {
 list1.add(i);
 list2.add(i);
 }
 assertEquals(list1, list2);
}

assertSame(expected, actual) : Fails if the expected and actual are not equal using reference
semantics (==)

@Test
public void test() {
 int x = 2;
 assertSame(2, x);

 List<Integer> list1 = new ArrayList<>();
 List<Integer> list2 = list1;
 assertSame(list1, list2);
}

assertNotSame(expected, actual) : Fails if expected and actual are equal using reference
semantics (==)

@Test
public void test() {
 int x = 2;
 assertNotSame(3, x);

 List<Integer> list1 = new ArrayList<>();
 List<Integer> list2 = new ArrayList<>();
 assertNotSame(list1, list2);
}

assertNull(value) : Fails if value is non-null

@Test
public void test() {
 Map<String, Integer> map = new HashMap<>();
 map.put("cse122", 1);
 assertNull(map.get("Hello World"));

 String s = null;
 assertNull(s);

}

assertNotNull(value) : Fails if value is null

@Test
public void test() {
 Map<String, Integer> map = new HashMap<>();
 map.put("cse122", 1);
 assertNotNull(map.get("cse122"));

 String s = "Hello World";
 assertNotNull(s);
}

assertArrayEquals(Any[] expectedValues, Any[] actualValues) : Fails if expectedValues and
actualValues do not have the same elements, in the same order.

@Test
public void test() {
 int[] a = new int[] {1, 2, 3};
 int[] b = new int[] {1, 2, 3};
 assertArrayEquals(a, b);
}

assertThrows(exception.class, () -> {code}) : Fails if code does not throw exception

@Test
public void test() {
 List<Integer> list = new ArrayList<>();
 assertThrows(IndexOutOfBoundsException.class, () -> {
 list.get(2); // List is currently: []
 });

 assertThrows(IndexOutOfBoundsException.class, () -> {
 list.add(1); // List is currently: [1]
 list.add(2); // List is currently: [1, 2]
 list.add(3); // List is currently: [1, 2, 3]
 list.remove(3); // Index 3
 });

}

Using JUnit to test Java's ArrayList Implementation:
Below is an example of a JUnit testing class that tests Java's ArrayList implementation:

import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;

import java.util.*;

public class ArrayListTest {
 private static final int TIMEOUT = 2000;
 private List<String> list;

 @BeforeEach
 public void setUp() {
 list = new ArrayList<>();
 }

 @Test
 @Timeout(TIMEOUT)
 public void testAddingElements() {
 assertTrue(list.isEmpty());
 list.add("Hunter Schafer");
 list.add("Miya Natsuhara");
 list.add("CSE 122");

 assertEquals("Hunter Schafer", list.get(0));
 assertEquals("Miya Natsuhara", list.get(1));
 assertEquals("CSE 122", list.get(2));

 assertTrue(list.size() == 3);
 }

 @Test
 public void testContains() {
 assertTrue(list.isEmpty());
 list.add("CSE 122");

 assertTrue(list.contains("CSE 122"));
 assertFalse(list.contains("Hello World"));
 }

 @Test
 public void testNegativeIndexGet() {
 assertTrue(list.isEmpty());
 assertThrows(IndexOutOfBoundsException.class, () -> list.get(-1));
 }
}

