
Programming Assignment 0
Warmup and Review

Overview
This assignment is intended to be a review and warm up for CSE 123. It will require you to use
the skills and concepts that you should be familiar with from your prior programming experience.
This is designed to help everyone review and practice the programming skills that will be
necessary to succeed in CSE 123. While we don't necessarily expect everyone to find this
assignment easy, if you find yourself having major difficulties with any of the content, please
contact the course staff to get support!

 Learning Objectives
● By completing this assignment, students will demonstrate their ability to:
● Predict the behavior and results of executing a Java program that includes complex

and/or compound data
● Identify errors in a Java program’s state or behavior, and implement fixes for identified

errors
● Write functionally correct Java programs that meet a provided specification using

compound data types
● Write functionally correct Java classes to represent new, compound data types

🔧 Assignment Structure
Unlike most future assignments in CSE 123, this assignment will consist of a series of individual
questions and problems. By focusing on a few separate and slightly smaller programming
problems, we can help you target your practice on the programming skills that will set you up for
success in our course.

Don't worry if you don't find this assignment particularly exciting since we are focusing on review
here. We will have many very exciting applications of programming in our future assignments!

To complete this assignment, you should go to each slide and complete the task(s). For quiz
slides (indicated by a blue clipboard icon), provide an answer to each question. For coding
challenge slides (indicated by a yellow angle brackets icon), upload your code to the workspace.
When you have successfully completed each slide, you will see the dot next to the slide title fill



in. The assignment is complete when you have a filled-in dot for every slide. The problems can
be worked on in any order.

🚧 Feeling Stuck?
While we expect this assignment to be review, it's still OK if you find this assignment a bit
challenging! Remember that learning is a challenging process, and you don't have to do it alone!

● You can visit the Introductory Programming Lab (IPL) to talk with a TA about
programming concepts or get help on assignments.

● You can stop by Brett or David's office hours to discuss course concepts or get help on
assignments or discuss the course in general.

● You can post questions on the discussion board here on Ed! You can make questions
public (anyone can see them) or private (only course staff can see them). This is a great
way to asynchronously get help on an assignment or ask questions about the course.

It is OK to get stuck and feel challenged by this assignment. However, note that this is intended
to be a warm-up for the type of programming we will be doing for the rest of the quarter, and the
tasks we will be solving in future weeks will be more complex than these problems and rely on a
solid grasp of the skills practiced in this assignment. If you feel like you cannot do this
assignment at all, we recommend reaching out to Brett and David
(cse123-instructors@cs.washington.edu) or the CSE undergrad advisors
(ugrad-adviser@cs.washington.edu) to discuss more about academic planning and which
programming course might be a good fit for your goals.

Opening coding portions in VSCode
1. Download the CSE123-P0.zip from the course web page.
2. Unzip the zip file:

a. Windows: Right-click “Extract all”, confirm the dialog that appears.
b. macOS: Double click the .zip file

3. You should now have a directory called “CSE123-p0” with a pdf and a folder called
p0-code inside of it.

4. In VSCode:
a. File->Open Folder
b. Select the p0-code directory that contains the various .java files.

https://courses.cs.washington.edu/courses/cse123/23au/office_hours/#introductory-programming-lab-ipl
https://courses.cs.washington.edu/courses/cse123/23au/office_hours/#instructor-office-hours
https://edstem.org/us/courses/47180/discussion


🏁 Submission
When you are ready to submit, go to the "🏁 Final Submission🏁" slide, read the statement
and check the box, then click "Submit" in the upper-right corner. You may submit as many times
as you want until the due date.

You can see your previous submissions by clicking the three dots icon in the upper-right and
selecting "Submissions and Grades." By default, we will grade your latest submission from
before the deadline. However, if you would like us to grade a different submission, you can
select that submission on the left side of the window and click "Set final." Note that we will not
grade any submission made after the deadline-- if you mark a submission after the deadline as
final, we will grade your most-recent on-time submission instead.

Please make sure you are familiar with the resources and policies outlined in the syllabus and
the programming assignments page.

For the coding portions, you can drag-and-drop the relevant file into Ed.

For example, after fixing Debugging.java is VSCode, you can go to the “Collections/Reference
Semantics -Debugging” slide on Ed, and drag your fixed version of Debugging.java onto the
right-hand side of the slide. It will then replace the version on Ed with your new one.

Not sure where your files are? Right-click the filename in the tab at the top of VSCode and
select “Show in file explorer” and it will help you out.

https://cs.uw.edu/123/syllabus/
https://cs.uw.edu/123/programming-assignments/


Part 1: Code Comprehension
These questions do not involve writing and running code. Please
answer them in Ed.

This slide contains a few problems that ask you to read and interpret Java code. Read and
answer each question.

The first 4 questions are based on the following method:

public static void arrayMystery(int[] a) {
for (int i = 1; i < a.length - 1; i++) {

a[i] = a[i - 1] - a[i] + a[i + 1];
}

}

For each question, indicate what values would be stored in the array after passing that array as
the parameter to the method arrayMystery.

Write your response as the array would be printed by Arrays.toString (i.e. values separated by
commas and surrounded by square brackets, such as [1, 2, 3] ).

1. [6, 2, 4]
2. [6, 0, -1, 3, 5, 0, -3]
3. [7, 7, 3, 8, 2]
4. [42, 42]

Assume there exists a class called Point that includes a two-parameter constructor. Consider
the following code:

Point p1 = new Point(1, 4);
Point p2 = new Point(3, 5);
Point p3 = p2;
Point p4 = new Point(3, 5);
Point p5 = p3;
Point p6 = p1;

How many Point objects are created in the above code?

Consider the same code from the previous question:



Point p1 = new Point(1, 4);
Point p2 = new Point(3, 5);
Point p3 = p2;
Point p4 = new Point(3, 5);
Point p5 = p3;
Point p6 = p1;

How many references to Point objects are created in the above code?

Consider the following method:

public static List<String> mystery(List<String> words, int max) {
List<String> result = new ArrayList<String>();
for (String word : words) {

if (word.length() > max) {
result.add(word);

}
}
return result;

}

Which of the following would be the best description of this method for a method comment?

● Returns a list of words.
● Iterates over a given list of strings using a for loop, checking if the length of each string is

bigger than a given maximum, and adds it to a new list if so, then returns that new list.
● Returns a new list containing the strings from the parameter list that are more than max

characters long.
● Returns a new list containing the strings from the parameter list that are at least max

characters long



Part 2: Collections/Reference Semantics -
Debugging
Work in Debugging.java

One of the TAs has been programming in Python for too long, and forgot how to code in Java!
They wrote a solution to the following problem, but accidentally included some bugs:

Write a method called deepCopy that takes as a parameter a map whose keys are
strings and whose values are lists of integers and that creates and returns a new map
that is a copy of the map parameter. For example, given a variable called map that
stores the following information:

{"cse121"=[42, 17, 42, 42], "cse122"=[10, 12, 14], "cse123"=[100,
99, 98, -97]}

The call deepCopy(map) should return a new map whose structure and content are
identical to map. Any later modifications to map or the lists in map following this call
should not be reflected in the copy. The map you construct should store keys in
alphabetical order. Your method should not modify the contents of the map passed as a
parameter. In constructing collection objects, you are required to use the 0-argument
constructors.

There are 5 bugs in the program given. Find and fix them all!



Part 3: Collections - Inverted Index
Work in InvertedIndex.java

Write a method called createIndex that creates an inverted index for a list of documents. Your
method should take one argument, a list of "documents" where each document is represented
as a string. Your method should return a map where the keys are individual words that appear in
the parameter list of documents and the values are sets of documents in which those words
appear.

For example, suppose the variable titles contains the following list:

[Raiders of the Lost Ark, The Temple of Doom, The Last Crusade]

In this case, the call createIndex(titles) would return the following map:

{ark=[Raiders of the Lost Ark], crusade=[The Last Crusade], doom=[The
Temple of Doom], last=[The Last Crusade],
lost=[Raiders of the Lost Ark], of=[The Temple of Doom, Raiders of
the Lost Ark], raiders=[Raiders of the Lost Ark],
temple=[The Temple of Doom], the=[The Temple of Doom, The Last
Crusade, Raiders of the Lost Ark]}

The keys of the returned map should be case-insensitive (i.e. treat "The" and "the" as the same
word). The keys of the returned map should be in sorted order, while the sets in the values
should prefer fast lookup speed.

You may assume that the parameter passed in non-null, that each element of the parameter is a
non-empty string, and that words in each document are separated by a single space.

Important: When writing your class, be sure to follow all guidelines in the Code Quality Guide
and Commenting Guide. Any additional helper methods created, but not specified in the spec,
should be declared private.

Note: This is essentially how many search engines work! They build up an index mapping
"search terms" (which could be more than single words) to "documents" (which could be more
than just strings). See Wikipedia for more information.

https://cs.uw.edu/123/resources/code_quality/
https://cs.uw.edu/123/resources/commenting/
https://en.wikipedia.org/wiki/Inverted_index


Part 4: Classes/Interfaces - Media
Work in Book.java

Write a Java class called Book that implements the provided Media interface and represents a
book. For books, the artists are considered to be the author(s).

Your class should have two constructors:

public Book(String title, String author)
Creates a book with the provided title and single author.

public Book(String title, List<String> authors)
Creates a book with the provided title and multiple authors.

The title and author(s) should not be able to be modified by a client after creation.

In addition to the methods required by the interface, your Book class should include a
toString() method to produce a readable string representation.

If the book has zero ratings, the string representation should be:
<name> by [<authors>]: No ratings yet!

If the book has at least one review, the string representation should be:
<name> by [<authors>]: <average rating> (<num ratings> ratings)

The average rating should be rounded to at most two decimal places in the string representation
only. (The getAverageRating method should return the actual average without rounding.)

Important: When writing your class, be sure to follow all guidelines in the Code Quality Guide
and Commenting Guide. Any additional helper methods created, but not specified in the spec,
should be declared private.

https://cs.uw.edu/123/resources/code_quality/
https://cs.uw.edu/123/resources/commenting/


Part 5: Reflection
These questions do not involve writing and running code. Please
answer them in Ed.

The following questions will ask that you practice metacognition to reflect on the topics covered
on this assignment and your experience completing it. For each question, focus on your plan
and/or process for working through the assignment along with the CS concepts. Think about
things like how you organized your working time, what sorts of things tended to go wrong, and
how you dealt with those errors or mistakes.

Please answer all questions.

Question 1
Describe your process for finding and fixing the bugs in the Debugging problem. What skills
have you learned or practiced to help you when debugging code? How will you use or adapt this
process for future assignments?

Question 2
Choose either the Inverted Index or Media problem: describe how you would go about testing
that the code you wrote for that problem is correct and meets the requirements. What specific
test cases would you consider? Why are those cases important?

For example, if we were testing the ArrayIntList class from class, important test cases might
include checking that an empty list has size zero, checking that an element is in the list after
being added, checking that the size of the list increases after an element is added, etc.

Question 3
What skills did you learn and/or practice with working on this assignment?

Question 4
What did you struggle with most on this assignment?

Question 5
What questions do you still have about the concepts and skills you used in this assignment?



Question 6
About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to
be close.)

Question 7
Was any part of the specification or requirements unclear? If so, which part(s), how was it
unclear, and how could it have been made more clear?

Question 8
[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message
board if you would like a response!)


