
CSE 123 Autumn 2023 Practice Final Exam #2

1. Code Comprehension

Part A: (Select all that apply) Which of these statements are true about inheritance?
Inheritance allows a subclass to access all private properties and methods of its parent class.
Calling a method using super will go to the parent class one level above the current subclass.
To indicate that class OrangeJuice is a subclass of Juice, we write the following:
public class OrangeJuice extends Juice

Parent classes can call the methods of their subclasses.
If the class Mammal is the parent class of Dog, then the following statement is legal:
Dog a = new Mammal();

Part B: Consider the following method in the IntTree class:
1 public List<String> method() {

2 List<String> result = new ArrayList<>();

3 methodHelper(overallRoot, result, "");

4 return result;

5 }

6

7 private void methodHelper(TreeNode root, List<String> result, String s) {

8 if (root != null) {

9 s += root.data;

10 if (root.left == null && root.right == null) {

11 result.add(s);

12 } else {

13 s += ", ";

14 methodHelper(root.left, result, s);

15 methodHelper(root.right, result, s);

16 }

17 }

18 }

Provide a tree that, if called by the above method, would result in a list of size 3.

1

Part C: Consider the following scenario:

In your free time during Thanksgiving break, you and a friend decided to start working on an online
platform in which users can display their academic and career accomplishments. After a quick
discussion of how a user should be represented, you settled on the following fields:

1 private String name;

2 private List<User> connections;

3 private Set<String> skills;

On your new platform, you want to allow users to apply to open positions at companies (think engineer,
artist, plumber, etc.). You also want to provide companies an ordered collection of applicants that are
best suited for the role. Being a near 123 graduate, you recognized the potential of using the
Comparable interface to define an ordering between applicants (where the first element after sorting
would be considered the “best” applicant for a role). You tell this to your collaborator who suggests the
following implementation for the compareTo method:

1 public int compareTo(User other) {

2 if (this.connections.size() == other.connections.size()) {

3 if (this.skills.size() == other.skills.size()) {

4 return this.name.compareTo(other.name);

5 }

6 return other.skills.size() - this.skills.size();

7 }

8 return other.connections.size() - this.connections.size();

9 }

Write an appropriate method comment for the above compareTo implementation.

Describe a potential concern a client of this platform might have with its design, and explain a
high-level change you could make to address that concern. Your critique should be from the
perspective of a client, not the implementer.

2

2.Code Tracing
Part A: For each of the following, list represents the starting node. Write the code necessary to
convert the following sequences of ListNode objects in the Before into the sequence of ListNode
objects in the After:

Before:
list -> [5] -> [4] -> [3] /

After:
list -> [4] -> [5] -> [3] /

Before:
list -> [1] -> [2] /

list2 -> [3] -> [4] /

After:
list -> [4] -> [1] /

list2 -> [2] -> [3] /

3

Part B: Consider the following method:
1 public int mystery(int n, int d) {

2 if (d < 0 || d > 9) {

3 throw new IllegalArgumentException();

4 }

5

6 if (n < 0) {

7 return -mystery(-n, d);

8 } else if (n == 0) {

9 return 0;

10 } else if (n % 10 == d) {

11 return mystery(n / 10, d) * 100 + d * 11;

12 } else {

13 return mystery(n / 10, d) * 10 + n % 10;

14 }

15 }

For each call below, indicate what is returned:

Call Return

mystery(3445, 5)

mystery(0, 0)

mystery(-101, 1)

mystery(323, 3)

mystery(12345, 6)

4

Part C: Consider the following classes:

public class Leela extends Fry {

public void method1() {

System.out.print("Leela1 ");

}

public void method2() {

System.out.print("Leela2 ");

super.method2();

}

}

public class Farnsworth extends Bender {

public void method1() {

System.out.print("Farnsworth1 ");

}

public String toString() {

return “Good news everyone!”;

}

}

public class Fry extends Bender {

public void method2() {

System.out.print("Fry2 ");

super.method2();

}

}

public class Bender {

public void method1() {

System.out.print("Bender1 ");

}

public void method2() {

System.out.print("Bender2 ");

method1();

}

public String toString() {

return “We’re doomed!”;

}

}

5

Given the classes above, what output is produced by the following code?

Bender[] rodriguez = {new Leela(), new Bender(), new Farnsworth(), new Fry()};

for (int i = 0; i < rodriguez.length; i++) {

rodriguez[i].method2();

System.out.println();

System.out.println(rodriguez[i]);

rodriguez[i].method1();

System.out.println();

}

Indicate what the output of each of the following statements would be.

6

elements[0]: Leela

elements[1]: Bender

elements[2]: Farnsworth

elements[3]: Fry

3. Linked List Debugging
Consider a method in the LinkedIntList class called removeAll that removes all occurrences of a
particular value. For example, suppose the variable list contains the following list:

list = [3, 9, 4, 2, 3, 8, 17, 4, 3, 18]

Then, after a call to list.removeAll(3) is made, the list would then store the elements:
list = [9, 4, 2, 8, 17, 4, 18]

If the list is empty or the value doesn't appear in the list at all, then the list should not be changed by
your method. You must preserve the original order of the elements of the list.

Consider the following implementation of removeAll:
1 public void removeAll(int n) {

2 if (front != null) {

3 while (front.data == n) {

4 front = front.next;

5 }

6 ListNode current = front;

7 while (current != null && current.next != null) {

8 if (current.next.data == n) {

9 current.next = current.next.next;

10 } else {

11 current = current.next;

12 }

13 }

14 }

15 }

Part A: When reviewing this implementation, you discover that the code contains a bug that is causing
it to not work as intended. In order to communicate what the bug is, you decide to write a test case.
First, you consider what elements list needs to have to expose the bug. Then, you consider what
input x should be, such that calling list.removeAll(x) triggers the bug. Finally, you consider what the
expected list should look like, assuming it was implemented correctly.

What should list be to expose the bug? (Provide your answer in the form of a list “[1, 2, 3]”)

What does x need to be such that list.removeAll(x) would trigger the bug?

list.removeAll()

Assuming the method was implemented correctly, what should the expected output of list be after the
method call from above?

7

Part B: Annotate (write on) the code below to indicate how you would fix the bug. You may add (using
arrows to indicate where to insert), remove (by crossing out), or modify (with a combination) any code
you choose. However, the fix should not require a lot of work.

1 public void removeAll(int n) {

2 if (front != null) {

3 while (front.data == n) {

4 front = front.next;

5 }

6 ListNode current = front;

7 while (current != null && current.next != null) {

8 if (current.next.data == n) {

9 current.next = current.next.next;

10 } else {

11 current = current.next;

12 }

13 }

14 }

15 }

8

4. Inheritance Programming
You have been asked to extend a pre-existing class Student that represents a college student. A student has
a name, a year (such as 1 for freshman and 4 for senior), and a set of courses that he/she is taking. The
Student class is as follows:

public class Student {

private String name;

private int year;

private Set<String> courses;

public Student(String name, int year) {

this.name = name;

this.year = year;

this.courses = new HashSet<>();

}

public void addCourse(String name) {

courses.add(name);

}

public void dropAll() {

courses.clear();

}

public int getCourseCount() {

return courses.size();

}

public String getName() {

return name;

}

public String getTuition() {

return 1234.50 * courses.size();

}

public int getYear() {

return year;

}

}

9

You are to define a new class called GradStudent that extends Student through inheritance. A GradStudent

should behave like a Student except for the following differences:
● A grad student keeps track of a research advisor, which is a professor working with the student.
● Grad students are considered to be 4 years further ahead than typical students. So, for example, a grad

student in year 1 of grad school is really in year 5 of school overall.
● Grad students can enroll in a maximum of 3 courses at a time. If a grad student tries to add additional

courses beyond 3, the course is not added to the student's set of courses.
● If grad students work too much, they become "burnt out." A burnt-out student is one who is in his/her

5th or higher year of grad school (9th or higher year of school overall) or one who is taking 3 courses.
You should provide the same methods as the superclass, as well as the following new behavior.

Constructor/Method Description

public GradStudent(String name, int year, String
advisor)

Constructs a graduate student with the given
name, given year (where 1 is the first year of
grad school, 5th year of school overall; etc.),
and research advisor

public String getAdvisor() Returns this grad student's research advisor

public boolean isBurntOut() Returns true if grad student is "burnt out" (in at
least the 5th year of grad school, and/or taking
3 courses)

You must also make GradStudent objects comparable to each other using the Comparable interface.
GradStudents are compared by year in ascending order, breaking ties by count of courses in ascending order,
and further breaking ties by advisor in ascending alphabetical order. In other words, a GradStudent object with
a lower year is considered to be "less than" one with a higher year. If two students have the same year, the one
with a lower count of courses is considered to be "less than" one with a higher course count. If the two
students have the same year and the same number of courses, the one whose advisor's name comes first in
alphabetical order is considered "less." (You should compare the strings as-is and not alter their casing,
spacing, etc.). If the two objects are the same by all three of these criteria, they are considered to be "equal."

10

Write your solution to problem #4 here:

11

5. Recursive Programming
You are standing at the base of a staircase and are heading to the top. A small stride will move up one
stair, and a large stride will advance two. You want to count the number of ways to climb the entire
staircase based on different combinations of large and small strides. For example, a staircase of three
steps can be climbed in three different ways: three small strides, one small stride followed by one large
stride, or one large followed by one small.

Write a recursive method waysToClimb that takes a non-negative integer value representing the
number of stairs and prints each unique way to climb a staircase of that height, taking strides of one or
two stairs at a time. Your method should output each way to climb the stairs on its own line, using a 1 to
indicate a small stride of 1 stair, and a 2 to indicate a large stride of 2 stairs. For example, the call of
waysToClimb(3) should produce the following output:

[1, 1, 1]

[1, 2]

[2, 1]

The call of waysToClimb(4) would produce the following output:
[1, 1, 1, 1]

[1, 1, 2]

[1, 2, 1]

[2, 1, 1]

[2, 2]

You may print out the possible ways to climb the stairs in any order, so long as you list the right overall
set of ways. There are no ways to climb zero stairs, so your method should produce no output if 0 is
passed.

12

Write your solution to problem #5 here:

13

6. Binary Tree Programming
Write a method mirror that converts a binary tree of integers to its mirror image. For example, if a
variable called t stores a reference to a binary tree then t.mirror() then the links of the tree should be
rearranged so that after the call, t stores the mirror image of what it stored before the call. Below is a
specific example of how a tree would change:

After the call is made, the tree stores the structure that you would see if you were to hold the original
tree's diagram up to a mirror. More precisely, the overall root (if it exists) remains in the same place in
the mirror image and every other node is moved so that it's new path from the overall root is composed
of the old path from the overall root with left and right links exchanged. For example, the node that
stores 4 in the example above has the path (left, right, left) in the original tree. In the mirror image, it
has path (right, left, right). The node that stores 1 has the path (left, right, right) in the original tree. In
the mirror image it has path (right, left, left).

You are writing a method that will become part of the IntTree class. You may define private helper
methods to solve this problem, but otherwise you may not call any other methods of the class. You may
not construct any new nodes, and you may not use any auxiliary data structure to solve this problem
(no array, ArrayList, stack, queue, String, etc). You also may not change any data fields of the nodes.
You MUST solve this problem by rearranging the links of the tree.

14

Write your solution to problem #6 here:

15

This page intentionally left blank for scratch work

16

