
CSE 123 Autumn 2023 Practice Final Exam #1

1. Comprehension
Part A:Which of these statements are true? (Select all that apply.)

Abstract classes cannot contain method implementations.
Linked lists are a better choice than array lists when values will frequently be added to the
middle of the list.
Recursive methods can contain multiple base cases.
Some problems can only be solved recursively.

Part B: For each of the following binary trees, indicate which type of traversal is shown: pre-order,
in-order, or post-order.

2 14 17 3 5 9

pre-order

in-order

post-order

2 11 6 5 15 10 0

pre-order

in-order

post-order

22 7 4 20 18

pre-order

in-order

post-order



Part C: Consider the following method in the IntTree class:
public int mystery(int sum) {

return mystery(overallRoot, sum, 0);

}

private int mystery(IntTreeNode root, int sum, int curr) {

if (root.left == null && root.right == null) {

if (root.data + curr >= sum) {

return 1;

} else {

return 0;

}

}

return mystery(root.left, sum, curr + root.data) +

mystery(root.right, sum, curr + root.data);

}

Draw a binary tree such that, if it were stored in the variable tree, the call tree.mystery(20) would
return 3.
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2. Code Tracing
Part A: For each of the following, draw the linked lists that are produced by starting with the lists shown
on the right and executing the code provided. You only need to draw the final lists, not any intermediate
steps.

p2.next.next = p1.next;
p1.next = p2;

p2.next = p1.next.next;
p1.next = p2;

ListNode temp = p1.next;
p1.next = p2;
temp.next = p2.next;
p2 = temp;
p1.next.next = null;
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Part B: Consider the following classes:
public class Animal {

public void method1() {
System.out.println("Animal 1");

}

public void method2() {
method1();
System.out.println("Animal 2");

}
}

public class Cat extends Animal {
public void method1() {

System.out.println("Cat 1");
}

public void method3() {
method2();
System.out.println("Cat 3");

}
}

public class Dog extends Animal {
public void method1() {

System.out.println("Dog 1");
}

public void method3() {
System.out.println("Dog 3");
method2();

}
}

public class Husky extends Dog {
public void method2() {

super.method2();
System.out.println("Husky 2");

}
}

Assume the following variables have been defined:
Dog var1 = new Husky();

Cat var2 = new Cat();

Animal var3 = new Animal();

Animal var4 = new Cat();

For each of the following statements, Indicate what the output would be. If the statement would result in
an error (either a compiler error or an exception), write “error” instead. (You may use a slash to indicate
line breaks. For example, “line1/line2” indicates two lines of output: “line1” and “line2.”)

var1.method2();

var2.method2();

var3.method1();

var4.method3();
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Part C: Consider the following method:
public static void mystery(int x) {

if (x < 10) {

System.out.print(x);

} else {

int y = x % 10;

System.out.print(y + "-");

mystery(x / 10);

System.out.print("-" + y);

}

}

For each of the following statements, indicate what the output would be.

mystery(2)

mystery(861)

mystery(4039)
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3. Binary Tree Debugging
Consider a method in the IntTree class called markDiffs that takes a single IntTree parameter,
other, and modifies this tree to indicate nodes that exist in one of this tree or other but not both. If a
node exists in this tree but not in other, the node in this tree should be replaced with a node with the
value -1. If a node exists in other but not in this tree, a corresponding node with the value -2 should be
added to this tree. If the node exists in both trees or neither tree, leave it unchanged in this tree.

For example, suppose that the variables tree1 and tree2 contain references to the following trees:

The method call tree1.markDiffs(tree2) would result the following trees:

Notice that the node that exists only in tree1 (8) has been replaced with a -1, and that nodes with the
value -2 have been added to tree1 in the places of nodes that exist only in tree2 (5 and 7). Nodes
that exist in both trees (6 and 2 in tree1, 1 and 4 in tree2) are unchanged in tree1, and tree2 is
entirely unchanged.

Now, suppose that the variables tree3 and tree4 contain references to the following trees:

The method call tree3.markDiffs(tree4) would not make any changes to either tree because each
node in tree3 has a corresponding node in tree4 and vice versa.

(continued on next page…)

6



Below is a buggy implementation of markDiffs that does not work as intended. Given the original
example trees above, tree3.markDiffs(tree4) produces the correct results, but
tree1.markDiffs(tree2) results in a NullPointerException on line 10.

Annotate (write on) the code below to indicate how you would fix the bug. You may add (using arrows to
indicate where to insert), remove (by crossing out), or modify (with a combination) any code you
choose. Be sure to clearly indicate where you would add/remove/change code in addition to what
changes you would make. (Incorrect or incomplete attempted fixes in the correct place may still be
eligible for an S.)

1 public void markDiffs(IntTree other) {

2 overallRoot = markDiffs(this.overallRoot, other.overallRoot);

3 }

4

5 private IntTreeNode markDiffs(IntTreeNode root1, IntTreeNode root2) {

6 if (root1 != null && root2 != null) {

7 root1.left = markDiffs(root1.left, root2.left);

8 root1.right = markDiffs(root1.right, root2.right);

9 } else if (root1 != null || root2 != null) {

10 root1 = new IntTreeNode(-1, markDiffs(root1.left, root2.left),

11 markDiffs(root1.right, root2.right));

12 }

13 return root1;

14 }
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4. Inheritance Programming
Consider the following class:

public class IceCream {

private Map<String, Integer> flavors;

private int scoops;

public IceCream() {

this.flavors = new HashMap<>();

}

public void addScoops(String flavor, int scoops) {

if (!flavors.containsKey(flavor)) {

flavors.put(flavor, 0);

}

flavors.put(flavor, flavors.get(flavor) + scoops);

this.scoops += scoops;

}

public int getScoops() {

return scoops;

}

public String toString() {

if (scoops == 0) {

return "No ice cream :(";

}

return scoops + " total scoops of " + flavors.keySet();

}

}

Write a new class called Sundae that represents an ice cream sundae. Sundae should extend IceCream

but differ in the following ways:
● A Sundae can include toppings (represented by strings). Each Sundae starts with no toppings.
● Sundae has a method addTopping(String topping) to add a topping.

○ A Sundae either includes a topping or does not– there are no amounts, and toppings
cannot be included multiple times. Adding a topping that is already present has no effect.

● Sundae has a method hasTopping(String topping) that returns true if the sundae includes
the specified topping and false otherwise.

● If a Sundae has any toppings, the string representation of the Sundae should include the list of
toppings (in any order).

○ The rest of the string representation is the same as any other IceCream. For example,
"4 total scoops of [chocolate, strawberry] with [hot fudge, sprinkles]"

● Sundae implements the Comparable interface; Sundaes are compared first by number of scoops
(fewer scoops is “less than” more scoops) then by number of toppings (fewer toppings is “less
than” more toppings)

To earn an E on this problem, your Sundae class must not duplicate any code from the IceCream class
and must not include any unnecessary overrides.

Write your solution on the next page.
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Write your solution to problem #4 here:
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5. Recursive Programming
Write a recursive method called drawMarbles that takes two parameters, a list of strings, marbles,
representing marble colors and an integer, num, and computes all possible ways to draw num marbles
from the list of possibilities (without replacement). Your method should print out each possible
sequence of draws.

For example, suppose the variables colors contained a reference to the following list:
["red", "blue", "green"]

Then, the call drawMarbles(colors, 3) would produce the following output:
[red, blue, green]

[red, green, blue]

[blue, red, green]

[blue, green, red]

[green, red, blue]

[green, blue, red]

Notice that order matters in the possibilities– [red, blue, green] and [blue, green, red] are
considered different.

As another example, if the variable colors contained the following list:
["red", "blue", "green", "yellow"]

Then the call drawMarbles(colors, 2) would produce the following output:
[red, blue]

[red, green]

[red, yellow]

[blue, red]

[blue, green]

[blue, yellow]

[green, red]

[green, blue]

[green, yellow]

[yellow, red]

[yellow, blue]

[yellow, green]

You may assume that num is less than or equal to the number of elements in marbles, and that each
element of marbles is unique.

You may print the possibilities in any order, but to earn an E, you must print all possibilities and you
must not print any possibility more than once. To earn a grade other than N, your method must be
implemented recursively, though you may also use loops as part of your recursive algorithm.

Write your solution on the next page.
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Write your solution to problem #5 here:

11



6. Linked List Programming
Write a method called removeDups to be added to the LinkedIntList class (see the reference sheet).
This method should reduce all sequences of the same value in the list to a single instance of that value.
For example, suppose the variable list contains a reference to the following list:

[3, 0, 0, 2, 8, 8]

After the call list.removeDups() executes, list would contain:
[3, 0, 2, 8]

As another example, suppose the variable list2 contains the following list:
[6, 6, 1, 1, 1, 9, 7, 7, 9, 4]

After the call list.removeDups() executes, list would contain:
[6, 1, 9, 7, 9, 4]

Notice that if the list contains non-consecutive duplicates, they do not need to be collapsed

To earn an E on this problem, you must not create any new objects of any kind, though you may create
new variables or references.

Write your solution on the next page.
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Write your solution to problem #6 here:
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