Creative Project 2: Mondrian Art

[OPTIONAL] Working with Images Tutorial

In the assignment detailed on the following slide, we will use recursion and image manipulation techniques to create some interesting CG art. The following tutorial was provided in CSE 122 prior to the image manipulation assignment but has been updated for our purposes, and explains how to work with images in Java. The information in this tutorial will be helpful for completing this assignment; we recommend taking a quick look through it even if you remember how to work with images from 122.

Representing Images

The following section contains links to further resources if you are interested in learning more, but only the information written on this slide is needed for the assignment.

Before you can manipulate digital images, you need to learn about how they are represented. Don't worry though, there are only 2 components to learn about - pixels and color!

Pixels

Pixels are the building blocks of digital images. Each pixel can be thought of as a square of a color that we choose. If we arrange these pixels in a grid, or an array, and choose the color of each one in a meaningful way, we can produce a digital image! By making these pixels small enough, you will see a continuous image instead of the individual pixels that compose it.

Color

In order to accurately and easily represent the wide array of colors that we see every day, a simple way to construct a color using a few base parameters is needed.

RGB

The RGB color model is an additive system in which the red, green, and blue colors of light are added together in specific intensities, reproducing a huge number of colors. This model is based on the theory of trichromatic color vision that our eyes use to interpret light, and has been used since the late 1800s in early color photography.

How RGB works
By assigning a numeric value to each RGB component of a color, we can easily store color values on a computer. Most digital colors can be described through a combination of 3 integer values, ranging from 0 - 255 inclusive, that specify the intensities of the RGB components of said color. For example, a shade of purple can be described with the values \(R=106, \ G=13, \ B=173 \), and a shade of gold can be described with the values \(R=255, \ G=215, \ B=0 \). These values make sense when you think about them; purple is the result of mixing red and blue, and so you would expect its red and blue RGB components to be higher than its green. Since yellow is the result of mixing red and green, gold's blue RGB component is 0, and its red and green are large numbers.

Expand to see colors:

- A shade of purple can be described with the values \(R=106, \ G=13, \ B=173 \), and a shade of gold can be described with the values \(R=255, \ G=215, \ B=0 \).

Giving each pixel of an image its own RGB color allows us to represent incredibly complex images. For each pixel on the image you want to display, all you need to store are the intensities of the RGB components of the color you want and voila! You have an image!

Modern displays and monitors can directly control the level of the RGB colors displayed within each pixel, and so our images can now be loaded and displayed directly on most modern computers!

If you would like to play around with RGB colors to see what different combinations of values create, feel free to use this RGB color picker, or discover a tool for yourself online.

Image Manipulation in Java

Now that you know the fundamentals of how digital images are made, you can learn how to make and manipulate them in Java! The first thing to learn is how Java represents colors. To do this a library aptly named \texttt{Color} is used.

\texttt{Color} is a class provided in the \texttt{java.awt} package that combines code used for creating, representing and manipulating colors in Java.

The \texttt{Color} class is able to create new colors from their RGB values alone. To do this the following syntax is used:

\begin{verbatim}
Color myColor = new Color(255, 217, 0);
\end{verbatim}

The three \texttt{int} values that we pass to the \texttt{new Color()} call are respectively the R, G, and B components of the color we are trying to create, in this case a shade of gold. The values that we pass in must be in the range of 0 - 255 inclusive or an \texttt{IllegalArgumentException} will be thrown.

Because \texttt{Color} is from the \texttt{java.awt} package, when we use it we must remember to add the following import statement to the top of our program:

\begin{verbatim}
import java.awt.*;
\end{verbatim}
The `Color` object also allows us to get the individual R, G, and B components of the color it is representing. Given a `Color` object `myColor` created above, you can do this through the following commands:

- `int redComponent = myColor.getRed();`
 - Returns the red component of the `Color` as an `int` value from 0 - 255 inclusive.
- `int greenComponent = myColor.getGreen();`
 - Returns the green component of the `Color` as an `int` value from 0 - 255 inclusive.
- `int blueComponent = myColor.getBlue();`
 - Returns the blue component of the `Color` as an `int` value from 0 - 255 inclusive.

Using the above information, you can now create any given RGB color in Java. You can also modify any existing one by retrieving its components and making a new color based on those values.

The Color class also comes with several static fields that we can directly use to represent colors without using their RGB values. For example, a `Color` object that represents red can be accessed by writing `Color.RED`, or the `Color` object that represents yellow can be accessed through `Color.YELLOW`. A full list of the static fields that you can use can be found here:

The last fundamental of digital images we need to learn about in Java is pixels and their arrangement. We will be taking advantage of an external library to help you easily make and manipulate digital images. This library, named `Picture.java`, gives us access to a new object, the `Picture`, that allows you to represent an image using a 2D array of `Color` information. Before we break down exactly how this 2D array works, let's look at the functionality of the `Picture` class. It is important to note that for the rest of this assignment, `Picture` refers to the Java object, and image refers to the digital image that we are creating.

Creating a Picture

There are 3 useful constructors implemented by `Picture`. You can use them to either create a `Picture` from an existing digital image, from an existing `Picture` object, or you can create a blank one with a specified size. Here are the syntax for these means of creation:

- `Picture myPicture = new Picture("image.jpg");`
 - This syntax lets us pass in the name of an existing image as a `String`, in this case "image.jpg". The resulting `Picture` is an exact RGB representation of that image. The image that you pass in must exist in the same directory level as the program you are writing, similar to the requirements for reading from a file. The following image formats
are supported by this library (.png, .jpg, and .gif).

- `Picture myPicture = new Picture(500, 300);`
 - This syntax lets us pass in two `int` representing the desired width and height of the image you want to create. The resulting `Picture` is a blank image of the specified dimensions. Both width and height must be greater than 0, and an `IllegalArgumentException` will be thrown if they are not.

- `Picture myPicture = new Picture(otherPicture);`
 - This syntax lets us pass another `Picture` object to make a copy of the original picture with its own state of pixels.

In this assignment you will primarily be using the second method of creating an image, but feel free to experiment with creating images from scratch on your own.

Because `Picture` is from an external library, we must make sure that the `Picture.java` file is present in the same directory as the program we are working on. This is done for you on Ed, but make sure to download `Picture.java` from Ed and place it in your working directory if you are programming in your own environment.

Picture Methods

There are three more methods associated with `Pictures` that you will need to work with digital images. Given the `Picture` object `myPicture` from above, you would use these methods in the following ways:

- `myPicture.save(String filename);`
 - This will take the `Color` data for each pixel from `myPicture` and save it to the given file name.

- `Color[][] pixels = myPicture.getPixels();`
 - Returns a 2D array of `Color` objects. Each element within the array represents the color of the corresponding pixel in `myPicture`. This is used to retrieve the RGB data from an image so that you can edit it.

- `myPicture.setPixels(Color[][] newPixels);`
 - Replaces the `Color` data of the Picture with the data from the passed in array. Each element in the `newPixels` array represents the new color of the corresponding pixel in `myPicture`.

Using the above information you can now create images and display them on our screen using Java! With the `getPixels()` and `setPixels()` methods you can also retrieve, edit, and replace the Color data of any image you want! Before showing examples of how to do this, let's talk about the 2D arrays that you will be using to make your images.

2D Color Array
In order to understand 2D arrays, we often visualize them as an indexed grid. It turns out that this is pretty much exactly how images are interpreted! Digital images are essentially just a grid (or 2D array) of pixels, and so it is possible to directly represent an image as an array of pixels. A pixel is essentially just the color data for a small segment of an image, and so all you need to store for each pixel is its color. Since colors are represented using the `Color` library in Java, our image can be directly represented with a 2D array of `Color`! Written in Java, this is a `Color[][]`.

In less complex terms; an image can be represented by a grid, where each point in the grid has a specific color value. When these colors are displayed in grid order, they appear as an image. A 2D array of `Colors` can be used to maintain this grid and achieve this effect. For example we show an example image as a grid of pixels, each one storing its own color RGB value. Now this picture is "low resolution" since it is 4 pixels by 5 pixels. A real image might have thousands, if not millions of pixels in it; with them so small it's very hard to see them with the human eye.

In our representation, the top-left pixel of an image lives at the indices \((0, 0)\). So if our `Color[][]` was called `pixels` then `pixels[0][0]` refers to this top-left pixel. As the first index increases, that moves down the image and as the second index increases, that moves to the right. In the picture above, the following locations have the following indices:
Putting it all together

Using what you’ve just learned about working with Colors and Pictures in Java, and your previous knowledge of 2D arrays, you can now create and manipulate your own digital images!

Here is an example program that takes an image, manipulates its RGB values, and then shows the new image to the user. We will break down how this program works afterwards:

```java
import java.util.*;
import java.awt.*;

public class Main {
    public static void main(String[] args) {
        // Step 1: Load image: Note we have to use a slightly different file name in a reading slide. In your code you can just say "suzzalo.jpg" or whatever the name of that photo is in your directory
        Picture pic = new Picture("/course/files/suzzallo.jpg");
        pic.save("originalSuzzalo.jpg");

        Color[][] pixels = pic.getPixels();

        // Step 2: Change image
        // See below for code
        increaseRed(pixels);

        // Step 3: Set pixels and display Image
        pic.setPixels(pixels);
        pic.save("angrySuzallo.jpg");
    }

    // This method increases the red RGB component of each pixel
    // within the passed in image. Takes the Picture to edit as a parameter.
    public static void increaseRed(Color[][] pixels) {
        for (int i = 0; i < pixels.length; i++) {
            for (int j = 0; j < pixels[i].length; j++) {
                Color originalColor = pixels[i][j];
                int red = originalColor.getRed();
                int green = originalColor.getGreen();
                int blue = originalColor.getBlue();

                Color newColor = new Color(Math.min(red + 100, 255), green, blue);
                pixels[i][j] = newColor;
            }
        }
    }
}
```
The **main** method of this program does 3 things.

1. Creates a new **Picture** by loading an image ("suzzallo.jpg") and retrieves the pixel values for the image.
2. Calls a method, **increaseRed()**, on the **Color[][]** which represents the pixels of the image to boost the red component of the image's RGB values.
3. Sets the pixels of the **Picture** to be the new pixels we have edited, then calls `.show()` on the **Picture** after the changes to show the image to the user.

You could also describe the actions of **main** by saying it loads, then changes, then displays an image. Your program will mimic this 3 step structure for its main method, although step 2 will be more complicated.

Changing the Color of a **Picture**

Let's dig deeper into the **increaseRed()** method, starting with the method header:

```java
public static void increaseRed(Color[][] pixels) {
```

Notice that we take a **Color[][]** as a parameter, and that our return type is **void**. Remember that with arrays, changes made to them as a parameter effect them in their original scope too. Because of this we do not have to return a resultant image from our manipulation methods.

The first thing this method does is use the **Color[][]** **pixels** to retrieve the needed pixel information. This data is given to us as a 2D array of **colors**. The nested **for** loop technique that we covered in class is used to iterate through the 2D array in order to process the individual pixels.

At each pixel we perform the following steps:

1. Retrieve the **Color** for the pixel directly from the 2D array. You can do this using typical array syntax: `Color originalColor = pixels[i][j];`
2. Retrieve the individual RGB components from the original color, using `originalColor.getRed()`, `originalColor.getGreen()`, and `originalColor.getBlue()`.
3. Create a new **Color** object for the pixel using the RGB values you took from the original color as a basis for your new color. Any manipulations are applied in this step.

 Notice the call to **Math.min()** for the red component of this new **Color**. Since we are increasing the red component of each pixel by 100, there could easily be a case where the resultant value is greater than 255. Since 255 is the largest value for any RGB component, we cannot increase red beyond this. In order to cap the increase to 255, we can call `Math.min(red + 100, 255);`.

```java
}
}
Math.min() works by taking 2 values and returning the smaller one, and so this call will always return a value less than or equal to 255.

4. Replace the old Color in the 2D array with the new one that you just created. You can do this using typical array syntax: `pixels[i][j] = newColor;`

After both for loops have finished running, our image has been fully processed and the control flow of our program can go back to main. Notice that the main method of the program contains the calls of `pic.getPixels()` and `pic.setPixels(pixels)`. By extracting the pixel data at the start of our program and applying the changes onto the Picture at the end, we can hold off the expensive computation of updating our Picture until all changes to the pixels have been made. It might not seem more efficient now, when we are only applying a single filter to our image, but in the next parts of this assignment you will be applying many filters onto your image and taking advantage of this technique will increase the speed of your program significantly.

You could describe the total actions of our program more simply like this:

1. Get the 2D Color array (the pixels) from the Picture
2. For each filter, at each pixel:
   1. Get the individual RGB values from the Color
   2. Make a new Color based on those values but with the desired manipulations made
   3. Replace the old Color in the 2D array with the new one
3. Once you have gone through every pixel with each filter, replace the old 2D Color array in the Picture with the new one you have just edited.

The next slides describe image manipulation methods and algorithms that you will be implementing. Remember to refer back to the information above while writing these. You can roughly copy the structure of the `increaseRed()` method to do most tasks in this assignment.
Specification

(Much of this assignment inspired by Ben Stephenson's 2018 Nifty Assignment.)

Background

In recent years, algorithmic art has become more commonplace, ranging from very simple, largely randomly generated pieces to sophisticated works created by artificial intelligence programs such as DALL-E. The artwork created by these systems can be quite impressive, but the process is not without criticism-- in particular, many worry that the increase in computer-generated art, especially for commercial purposes (such as logos, advertisements, cover art, etc.) may have a significant impact on the livelihood of professional artists.

In this assignment, we will attempt to programatically create images that evoke the style of 20th century Dutch abstract artist Piet Mondrian, specifically pieces such as Tableau I and Composition A. While our program will not be particularly intelligent, it will follow certain rules that attempt to emulate some of the techniques Mondrian used.

Important note: In this assignment, we are in no way intending to claim we can recreate, or even approximate, the work of artists like Mondrian, nor are we claiming that the images we will create comparable to Mondrian's works. Rather, the images we will create are simply meant to evoke the style of a subset of Mondrian's work by focusing on certain elements and techniques.

Learning Objectives

By completing this assignment, students will demonstrate their ability to:

- Define a solution to a given problem using a recursive approach
- Write functionally correct recursive methods
- Produce clear and effective documentation to improve comprehesion and maintainability of a class
- Write a class that is readable and maintainable, and that conforms to provided guidelines for style, and implementation

Program Behavior

You will implement a program to generate random artwork in the style of Mondrian. Your random artwork will start with a blank canvas of a given width and height and should repeatedly break the canvas into smaller and smaller regions until the regions are below a certain size. The specifics of this algorithm should be as follows:
If the region being considered is at least one-fourth the height of the full canvas and at least one-fourth the width of the full canvas, split it into four smaller regions by choosing one vertical and one horizontal dividing line at random.

If the region being considered is at least one-fourth the height of the full canvas, split it into two smaller regions by choosing a horizontal dividing line at random.

If the region being considered is at least one-fourth the width of the full canvas, split it into two smaller regions by choosing a vertical dividing line at random.

If the region being considered is smaller than one-fourth the height of the full canvas and smaller than one-fourth the width of the full canvas, do not split the region.

Any time a region is split, the dividing line(s) should be chosen at random to be within the bounds of the region.

Once a region is below a certain size, it should be filled in with a color chosen randomly from red, yellow, cyan, and white. When filling a region, leave a one-pixel border around the edge uncolored -- this will give the appearance of black lines separating the colored regions.

Example Images

Here are a few examples of the images your program might generate:
It may not be clear from these images, but there is also a black border around the entire canvas. You do *not* need to limit the border to interior edges.

**Extensions**

To earn a grade of E on this assignment, you must implement one of the following extensions:

**Random Number of Splits**

If a region is large enough to be split in a dimension, instead of always splitting into two smaller regions on that dimension, split the region into a randomly chosen number of smaller regions, with a maximum of 4 splits on each dimension. If the region is large enough to be split on both dimensions, you should choose the number of splits on each dimension separately.

**Color Related to Location**

Instead of determining the color of a region completely randomly, choose the color based in part on the location of the region in the overall canvas. For example, you might make regions closer to the upper left more likely to be red and regions closer to the lower right more likely to be blue. Or you might make regions closer to the center of the image more likely to be darker and regions closer to the edges more likely to be lighter. (You should still color each full region a single color.)

For this option, you may want to use the `color` constructors rather than simply relying on the constants. See the "Working with Images" slide for more information.

**Random Fill Shape**

If a region is not large enough to be split, instead of always filling the entire region as a rectangle, randomly choose among several shapes to fill in that region. You may choose the specific shapes that will be possible, but there should be a least 2 such shapes (of which a rectangle may be one).

**Custom Extension**
If you would like, you may propose a different extension of your choice. Your proposed extension must be roughly similar in complexity to the above options and must materially change the resulting art. If you would like to propose a custom extension, you must post it in this Ed thread and receive approval.

Implementation Requirements

Required Methods

You must implement the following two methods in the provided Mondrian class in your assignment:

```java
public void paintBasicMondrian(Color[][] pixels)
```

- Fill pixels with Color objects (using the java.awt.Color class) according to the basic algorithm specified above.

```java
public void paintComplexMondrian(Color[][] pixels)
```

- Fill pixels with Color objects (using the java.awt.Color class) based on your chosen extension.

Your methods should work properly when called with the provided client program in Client.java. You are welcome to modify the client for your own testing if you would like, but your methods must function correctly with the provided code.

Your final submission must also contain two files in your workspace named "basic.png" and "complex.png" that correspond to your basic and complex implementations on a canvas size of your choosing. You can use the Run button to generate your image, download it, and then re-upload it to your workspace or you can use the Terminal tab which will autosave the file to your workspace when it's finished running.

Recursion

To earn a grade higher than N on this assignment, your algorithms must be implemented recursively. You will want to utilize the public-private pair technique discussed in class. You are free to create any helper methods you like, but the core of your algorithm (specifically, the dividing and filling of regions) must be recursive.

Since recursion with public-private pairs often leads to many parameters that need to be tracked and updated, we would encourage you to think of solutions that factor some logic regarding randomly dividing regions into a private helper method or private helper class. Note that this is not a requirement that will be graded on, but rather a recommendation to make the assignment easier.

java.awt.Color

ℹ️ A detailed description of this class and its usage is given in the "Working with Images Tutorial" on the previous
You can directly access `Color` objects to represent the colors needed to create the assignment through the `static` fields of the `Color` class. For example, a `Color` object that represents red can be accessed by writing `Color.RED`, or the `Color` object that represents yellow can be accessed through `Color.YELLOW`.

```java
Color shapeColor = Color.RED;
```

The four colors that you will use for the basic part of this assignment (`paintBasicMondiran`) can be accessed by writing:

```java
Color.RED, Color.YELLOW, Color.CYAN, Color.WHITE
```

You may choose to use additional colors for your extension (`paintComplexMondrian`).

**Assignment Requirements**

For this assignment, you should follow the [Code Quality guide](#) when writing your code to ensure it is readable and maintainable. In particular, you should focus on the following requirements:

- Avoid making objects you don't need. Look for opportunities to construct objects and reuse them elsewhere. This can be tricky to spot, but in particular you should review your code statements that instantiate `new` objects or call other methods that do so.
- Look out for including additional base or recursive cases when writing recursive code. While multiple calls may be necessary, you should avoid having more cases than you need. Try to see if there are any redundant checks that can be combined!
- Make sure that all parameters within a method are used and necessary.
- You should comment your code following the [Commenting Guide](#). You should write comments with basic info (a header comment at the top of your file), a class comment for your `Mondrian` class, and a comment for every method.
  - Make sure to avoid including `implementation details` in your comments. In particular, for your object class, a `client` should be able to understand how to use your object effectively by only reading your class and method comments, but your comments should maintain `abstraction` by avoiding implementation details.
- All methods present in your class that are not listed in the specification must be private. Up until this point in the quarter we have been warning about this in assignment feedback, but as public-private pairs are an important part of recursive programming it is something we will fully care about from this point forwards.

**Accessibility Note**

We acknowledge that the assignment may not be accessible to those who are visually impaired or colorblind. If this is a concern, please reach out for additional support by emailing the instructors or
making a private post on the Ed board and we will make alternative arrangements for you.
Mondrian Art

You may ignore the `compile.sh` file in the workspace as it's used by staff to make running your program easier in Ed.

Remember that your final submission must contain two files: `basic.png` and `extension.png` that correspond to your basic and complex mondrian implementations. The easiest way to get these files saved in your workspace is by using the Terminal tab in ed and generating your canvas that way. Alternatively you can use the Run button, download the resulting image, and then re-upload it to your workspace.
Reflection

The following questions will ask you practice **metacognition** to reflect on the topics covered on this assignment and your experience completing it. For each question, focus on your plan and/or process for working through the assignment along with the CS concepts. Think about things like how you organized your working time, what sorts of things tended to go wrong, and how you dealt with those errors or mistakes.

Please answer all questions.

**Question 1**
How do you think algorithmic art (like what you created in this assignment) compares to human-crafted art? What do you see as the advantages and limitations of algorithmic art?

*No response*

**Question 2**
How do you think the increased prevalence and sophistication of AI-generated artwork affects human artists, whether established artists who created work used to build AI algorithms or aspiring artists having to compete with computer-generated options?

*No response*

**Question 3**
Do you think the algorithm you used to create your images would have been easier, harder, or neither to implement using iteration instead of recursion? Why?

*No response*

**Question 4**
Describe how you went about testing your implementation. What specific situations and/or test cases did you consider? Why were those cases important?

*No response*

**Question 5**
What skills did you learn and/or practice with working on this assignment?

*No response*
Question 6
What did you struggle with most on this assignment?
No response

Question 7
What questions do you still have about the concepts and skills you used in this assignment?
No response

Question 8
About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be close.)
No response

Question 9
Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear, and how could it have been made more clear?
No response

Question 10
[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?
(Note that we may not be able to respond to questions here, so please post on the message board if you would like a response!)
No response
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your work.

**Question**

I attest that the work I am about to submit is my own and was completed according to the course Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any outside resources, they are allowed and have been properly cited. If I have any concerns about this policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

*No response*