
Creative Project 1: Survivor Challenge

Speci�cation

Thanks to Miya Natsuhara and Sam Wolfson for help with inspiration and brainstorming for this
assignment.

Background
The popular TV show Survivor, like many other competition or "reality" shows, often puts its
contestants through challenges consisting of a series of tasks that must be completed to earn a prize
or reward. The challenges can take many di�erent forms and require a wide range of skills. In this
assignment, you will implement several classes to represent di�erent types of tasks for a simulation
of these types of challenges.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

De�ne relationships between Java classes using inheritance, abstract classes, and references

Write a Java class that extends a given abstract class

Produce clear and e�ective documentation to improve comprehension and maintainability of
classes

Write classes that are readable and maintainable, and that conform to provided guidelines for
style, and implementation

Simulation Structure
In our simulation, a challenge will be represented by a list of tasks as de�ned by the provided Task
class. You will be responsible for implementing several speci�c types of tasks, as follows:

EnduranceTask - tasks that test endurance by requiring contestants to repeat a single action
many times in a row

e.g. jumping over a series of hurdles, hanging from a wall for an extended period of time,
swimming a number of laps in a pool or lake

PrecisionTask - tasks that test skill and accuracy by requiring contestants to take a particular
set of actions in a particular order

e.g. completing an obstacle course, pushing a series of buttons in a particular order

PuzzleTask - tasks that test intelligence or memory by requiring constants to solve a puzzle or
riddle

e.g. solving a math problem

One additional task type of your choice that extends one of the above task types
e.g. a strength task, a speed task, a memory task, or any other task you can think of!

Each type of task will be represented by a single class, which should (directly or indirectly) extend the
Task class speci�ed in Task.java . See the source �le for the required methods.

Sample Simulation
Here is an example of how the simulation might run when the required classes are fully
implemented. This output was produced using the provided Client.java and a reference solution
for all subclasses of the Task class. You are not required to exactly match this output format and
text, but you must not modify Client.java (see below). In the below example, user input is bold
and underlined:

Current task: A set of three hurdles.
Previous actions: []
Possible actions: [jump, run, swim, crawl, climb]
Your action? jump
 Action successful!

Current task: A set of three hurdles.
Previous actions: [jump]
Possible actions: [jump, run, swim, crawl, climb]
Your action? jump
 Action successful!

Current task: A set of three hurdles.
Previous actions: [jump, jump]
Possible actions: [jump, run, swim, crawl, climb]
Your action? swim
 Action not successful.

Current task: A set of three hurdles.
Previous actions: [jump, jump]
Possible actions: [jump, run, swim, crawl, climb]
Your action? jump
 Action successful!
 Task completed!

Current task: A small lake.
Previous actions: []
Possible actions: [jump, run, swim, crawl, climb]
Your action? fly
 Invalid action: fly

Current task: A small lake.

Previous actions: []
Possible actions: [jump, run, swim, crawl, climb]
Your action? run
 Action not successful.

Current task: A small lake.
Previous actions: []
Possible actions: [jump, run, swim, crawl, climb]
Your action? swim
 Action successful!
 Task completed!

Current task: A low crawl net, then a wall with a rope, then a dash to the end.
Previous actions: []
Possible actions: [jump, run, swim, crawl, climb]
Your action? crawl
 Action successful!

Current task: A low crawl net, then a wall with a rope, then a dash to the end.
Previous actions: [crawl]
Possible actions: [jump, run, swim, crawl, climb]
Your action? crawl
 Action not successful.

Current task: A low crawl net, then a wall with a rope, then a dash to the end.
Previous actions: [crawl]
Possible actions: [jump, run, swim, crawl, climb]
Your action? climb
 Action successful!

Current task: A low crawl net, then a wall with a rope, then a dash to the end.
Previous actions: [climb, crawl]
Possible actions: [jump, run, swim, crawl, climb]
Your action? run
 Action successful!
 Task completed!

Current task: What is 2 + 2?
Previous actions: []
Possible actions: [hint, solve <solution>]
Your action? hint
 Action successful!

Current task: What is 2 + 2?
 HINT: It's 4.
Previous actions: [hint]
Possible actions: [hint, solve <solution>]
Your action? solve 22
 Action not successful.

Current task: What is 2 + 2?
 HINT: It's 4.
Previous actions: [hint]
Possible actions: [hint, solve <solution>]

Your action? solve 4
 Action successful!
 Task completed!

Challenge complete. Congratulations!!!

Implementation Requirements

Make sure to read the speci�cation very carefully and thoroughly! It includes important cases to take into
mind and account for!

Each type of task should be represented by a class that extends the Task class. You should not
modify Task . You should utilize inheritance to capture common behavior among similar task types
and eliminate as much redundancy between classes as possible.

Your classes should be implemented so that the client program in Client.java works as written. In
particular, your implementations must not rely on any public methods beyond those speci�ed in the
Task interface. (You are welcome to add additional public or private helper methods, but your
classes must be able to be utilized by the client without calling these methods directly.)

Required Constructors

Each of the required classes should have the following constructors (you may include additional
constructors if you wish):

public EnduranceTask(String type, int duration, String description)

String type - the type of task, which is also the action required to complete the task

This must be one of the valid actions for this task type

int duration - the number of times the action must be taken to complete the task

String description - a text description of the task

public PrecisionTask(List<String> requiredActions, String description)

List<String> requiredActions - the sequence of actions that are required to complete the
task

Each action must be one of the valid actions for this task type

Actions need to be completed in order to complete the task

String description - a text description of the task

public PuzzleTask(String solution, List<String> hints, String description)

String solution - the expected solution for this task

The solution will be provided with the "solve" action

List<String> hints - an ordered list of hints to be provided to the client when taking the
"hint" action

May be empty if there are no hints

If all hints have already been given (including if there are no hints), takeAction() should
return false for the hint action.

String description - a text description of the task

Includes the most recent hint given.

Finally, all implementations of a task must throw an IllegalArgumentException in takeAction()
in the event of an invalid action.

Your classes must not directly produce any console output-- all output must be produced by the
client program.

HINT 1: You may override the getDescription() to re�ect changes in the task's state if you would like, but
you should do so sparingly.
HINT 2: Recall that subclasses can't directly access or change their superclass's �elds. The subclasses,
however, do have access to their superclass's methods, which then can directly access or change the
superclass's �elds.

You may add one or more lines of code after line 11 of Client.java to create additional tasks
(including at least one instance of your custom task type), and you may create any additional
variables or data to pass to constructors as parameters. But you should not otherwise modify the
client, and in particular, you should not modify the attemptChallenge method. Implement your
classes so that the client works as written. You should also not modify the Task.java �le.

Assignment Requirements
For this assignment, you should follow the Code Quality guide when writing your code to ensure it is
readable and maintainable. In particular, you should focus on the following requirements:

You should make all of your �elds private and you should reduce the number of �elds only to
those that are necessary for solving the problem.

Each of your �elds should be initialized inside of your constructor(s).

You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your �le), a class comment for every class, and
a comment for every method other than main.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object e�ectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

Survivor Challenge

This code slide does not have a description.

Re�ection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

Question 6

The following questions will ask you practice metacognition to re�ect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

Describe the custom task type you implemented. What sort of task does it represent? What class did
you decide it should extend? Why did you choose to extend that class?

Describe how you went about testing your implementation. What speci�c situations and/or test cases
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

No response

Question 7

No response

Question 8

No response

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the speci�cation or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

Testing Comprehension

Question 1

Question 2

Consider the following method spec:

//pre: x represents a number (i.e. not NaN)
//post: returns the square root of x, or ComplexNumberException if x is negative
public double squareRoot(double x)

Which of the following would be appropriate tests for squareRoot ? Assume that no weird �oating
point stu� will happen (everything will be perfectly mathy)

Testing that squareRoot(4.0) returns 2.0

Testing that squareRoot(0.0) returns 0.0

Testing that squareRoot(-1.0) returns i

Testing that squareRoot(-1.0) returns 1.0

Testing that squareRoot(Double.NaN) throws an IllegalArgumentException

Testing that squareRoot(-1.0) throws an IllegalArgumentException

Testing that squareRoot(-1.0) throws an ComplexNumberException

What does each part of assertEquals and assertTrue represent?

assertTrue(a, b)
assertEquals(x, y, z)

Order the items as:

a

The tested value

The error message, if x does not equal y

The expected value

The error message, if a is not true

The tested boolean value

Question 3

"Does not return correct answer for positive number"

ComplexNumberException.class

0.0

"Does not return correct answer for zero"

squareRoot(16)

Question 4

b

x

y

z

Consider the following unit test for the method squareRoot . Arrange where each item should go in
alphabetical order (ex. the �rst item in order will go where A is, etc.)

@Test
@DisplayName("squareRoot Correct")
public void testSquareRoot() {
 assertEquals(4.0, A, B);
 assertEquals(C, squareRoot(0.0), D);
 assertThrows(C, () -> squareRoot(-1.0), "Does not throw correct exception for negative input!)
}

Consider the following unit test for PuzzleTask in Survivor Challenge. Arrange where each item
should go in alphabetical order (ex. the �rst item in order will go where A is, etc.)

t.isComplete()

"Task is not considered complete correctly."

t.takeAction("solve answer")

!t.isComplete()

@Test
@DisplayName("Puzzle Answer Correct")
public void testPuzzleAnswer() {
 Task t = new PuzzleTask("answer", new ArrayList<String>(), "test puzzle");
 assertTrue(A, "isComplete returned true incorrectly");
 assertTrue(B, "Solving task did not function as expected.");
 assertTrue(C, D);
}

Fun Fact: this is one of the actual tests that runs when you hit "Mark"!

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course sta� to discuss before submitting.

(Type "yes" as your response.)

