
CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

CSE 122
L E C 0 9

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructor:

TAs:

Adrian Salguero

122 26Wi Lecture Tunes

Music: 122 26Wi Lecture Tunes

Ava
Blake R
Blake P
Cady
Caleb
Cole
Colin
Connor

Dalton
Dani
David
Diya
Hanna
Ivy
Mahima
Medha

Neal
Neha
Nicolae
Nicole
Rio
Rohan
Saachi
Shreya

Shreyank
Sthiti
Sushma
Suyash
TJ
Wesley
Yang

Maps

Slido vote & chat with your neighbors:

What are your plans for spring break?

BEFORE WE START

https://open.spotify.com/playlist/0uOENHkoLcs2xauEhye9em?si=5viM0_DhRceDGjKqL2l-1A&nd=1&dlsi=37b72745d58e4c62

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Lecture Outline

• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Announcements

•Reminder: Quiz 1 is Tuesday, February 17th

- Quiz 0 results coming soon !

•Resubmission Cycle 2 (R2) form open now
- Due Tuesday, Feb 10th by 11:59 PM
- Eligible Assignments: C0, P0, C1

•Programming Assignment 2 (P2) releasing later
today!

- Due Tuesday, Feb 17th by 11:59pm

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Lecture Outline

• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Map ADT

• Data structure to map keys to values
- Keys can be any* type; Keys must be unique

- Values can be any type

• Operations
- put(key, value): Associate key to value

- Overwrites duplicate keys

- get(key): Get value for key

- remove(key): Remove key/value pair

*Same as Python’s dict

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Programming with Maps in Java

• Interface: Map

• Implementations: TreeMap, HashMap

// Making a Map

Map<String, String> favArtistToSong = new TreeMap<>();

// adding elements to the above Map

favArtistToSong.put(”Saja Boys", ”Soda Pop");

favArtistToSong.put("Aitana", ”Conexión Psíquica");

favArtistToSong.put(”Taylor Swift", ”Dress");

// Getting a value for a key

String song = favArtistToSong.get(”Saja Boys");

System.out.println(song);

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Programming with Maps in Java
Methods Description

put(key, value) adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Map Implementations

• Our first data structures with marked differences in how their
implementations behave

• One Map ADT / Interface

• Two Map implementations
- TreeMap – Pretty fast, and sorted keys

- HashMap – Extremely fast, unsorted keys

Map<String, Integer> map1 = new TreeMap<>();

Map<String, Integer> map2 = new HashMap<>();

...

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

sli.do #cse122Practice : Think

Select the method calls required to modify the given
map m as follows:
Assume m’s contents are
 98030="Kent"
 98178="Seattle"
 98166="Burien"
 98041="Bothell"

We want to modify m so that its contents are
 98030="Kent"
 98178="Tukwila"
 98166="Burien"
 98041="Bothell"
 98101="Seattle"
 98126="Seattle"

A. m.put(98178, "Tukwila");

B. m.remove(98178);

C. m.put(98126, "Seattle");

D. m.get(98178, "Seattle");

E. m.put(98101, "Seattle");

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

sli.do #cse122Practice : Pair

Select the method calls required to modify the given
map m as follows:
Assume m’s contents are
 98030="Kent"
 98178="Seattle"
 98166="Burien"
 98041="Bothell"

We want to modify m so that its contents are
 98030="Kent"
 98178="Tukwila"
 98166="Burien"
 98041="Bothell"
 98101="Seattle"
 98126="Seattle"

A. m.put(98178, "Tukwila");

B. m.remove(98178);

C. m.put(98126, "Seattle");

D. m.get(98178, "Seattle");

E. m.put(98101, "Seattle");

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Lecture Outline

• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Lecture Outline

• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

joinRosters
Write a method joinRosters that combines a Map from student name to quiz
section, and a Map from TA name to quiz section and prints all pairs of
students/TAs.

For example, if studentSections stores the following map:

{Alan=AC, Jerry=AB, Yueying=AA, Sharon=AB, Steven=AB, Zewditu=BA}

And taSections stores the following map

{Ayush=BA, Marcus=AA, Aishah=AB, Chaafen=AC} AC: Alan - Chaafen
AB: Jerry - Aishah
AB: Sharon - Aishah
AB: Steven - Aishah
AA: Yueying – Marcus
BA: Zewditu – Ayush

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

Lecture Outline

• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

mostFrequentStart

Write a method called mostFrequentStart that takes a Set of words and
does the following steps:

• Organizes words into “word families” based on which letter they start
with

• Selects the largest “word family” as defined as the family with the
most words in it

• Returns the starting letter of the largest word family (and if time,
should update the Set of words to only have words from the selected
family).

CSE 122 Winter 2026LEC 09: Maps sli.do #cse122

mostFrequentStart
For example, if the Set words stored the values
["hello", "goodbye", "library", "literary", "little", "repel"]

The word families produced would be
'h' -> 1 word ("hello")

'g' -> 1 word ("goodbye")

'l' -> 3 words ("library", "literary", "little")

'r' -> 1 word ("repel")

Since 'l' has the largest word family, we return 'l' and modify the Set
to only contain Strings starting with 'l'.

	Default Section
	Slide 1: Maps
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 11: Lecture Outline
	Slide 12: Map ADT
	Slide 13: Programming with Maps in Java
	Slide 14: Programming with Maps in Java
	Slide 15: Map Implementations
	Slide 16: Select the method calls required to modify the given map m as follows:
	Slide 17: Select the method calls required to modify the given map m as follows:
	Slide 18: Lecture Outline
	Slide 19: Lecture Outline
	Slide 20: joinRosters
	Slide 21: Lecture Outline
	Slide 22: mostFrequentStart
	Slide 23: mostFrequentStart

