YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Slido vote & chat with neighbors:
What food could you only eat happily
for the rest of your life?

CSE 122

Music: 122 26Wi Lecture Tunes &

Stacks & Queues Practice

Instructor: Adrian Salguero

TAs: Ava Dalton Neal Shreyank
Blake R Dani Neha Sthiti
Blake P David Nicolae Sushma
Cady Diya Nicole Suyash
Caleb Hanna Rio T
Cole vy Rohan Wesley
Colin Mahima Saachi Yang
Connor Medha Shreya

Raise hand or send here

slido #csel22

https://open.spotify.com/playlist/0uOENHkoLcs2xauEhye9em?si=5viM0_DhRceDGjKqL2l-1A&nd=1&dlsi=37b72745d58e4c62

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Lecture Outline

* Quick Recap
* copyStack Review
* Exceptions

* Structured Example: spliceStack

YW UNIVERSITY of WASHINGTON

LEC 07: Stacks & Queues Practice CSE 122 Winter 2026

Announcements

* Creative Project 1 was due yesterday, how’d it go?

* Programming Assignment 1 releasing later tonight
- Focusing on Stacks and Queues!

* Resubmission Cycle 1 form posted!

- Due February 39 by 11:59pm PT
- Eligible assignments: CO, PO

sli.do #csel22

https://docs.google.com/forms/d/e/1FAIpQLSd8snXt8B9ceG6bD_KAbDzmjLgu7sBuaJ-iLfH5K04JQU3eiw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSd8snXt8B9ceG6bD_KAbDzmjLgu7sBuaJ-iLfH5K04JQU3eiw/viewform

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Lecture Outline

* Announcements

* copyStack Review
* Exceptions

* Structured Example: spliceStack

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Stacks & Queues

* Some collections are constrained, only use optimized operations
- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added

push pop
front back
top| 3 88 peek — 1 2 3 |+~—
2
bottom 1 ‘e queue

stack

W UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #cse122

Fundamental Data Structures => Problem Solving

* On their own, Stacks & Queues are | .. I
quite simple with practice l

Reinterpret / Understand the problem

(few methods, simple model)]
P] Sumemeesemsener, | .
* Some of the problems we ask are s

'
complex because the tools you have @] oo

mu

to solve them are restrictive I
‘g L Evaluate the solution
- sum(Stack) is hard with a Queue as
the auxiliary structure g ;

L Implement the solution
* We challenge you on purpose here , | e rtemersometie
to practice problem solving

Remember:

L Evaluate the implementation

This is

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Common Problem-Solving Strategies

* Analogy — Is this similar to a problem you’ve seen?
- sum(Stack) is probably a lot like sum(Queue), start there!

* Brainstorming — Consider steps to solve problem before writing code
- Try to do an example “by hand” = outline steps

e Solve Sub-Problems — Is there a smaller part of the problem to solve?
- Move to queue first

* Debugging — Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

* |terative Development — Can we start by solving a different problem that
is easier?

- Just looping over a queue and printing elements

W UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026

sli.do #csel22

Metacognition

* Metacognition: asking questions about your solution process.
* Examples:

While debugging: explain to yourself why you’re making this change to your
program.

Before running your program: make an explicit prediction of what you expect
to see.

When coding: be aware when you’re not making progress, so you can take a
break or try a different strategy.

When designing:
- Explain the tradeoffs with using a different data structure or algorithm.
- If one or more requirements change, how would the solution change as a result?
- Reflect on how you ruled out alternative ideas along the way to a solution.

When studying: what is the relationship of this topic to other ideas in the
course?

YW UNIVERSITY of WASHINGTON LEC O7: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Common Stack & Queue Patterns

e Stack 2 Queue and Queue — Stack

- We give you helper methods for these on problems
* Reverse a Stack with a S=>Q move & then a Q—>S move

* “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back a total of size times

- Careful: Watch your loop bounds when a queue’s size changes

* A "splitting” loop that moves some values to the Stack and others to
the Queue

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Lecture Outline

* Announcements

* Quick Recap

* Exceptions

* Structured Example: spliceStack

sli.do #csel22

W UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues SrEEeE CSE 122 Winter 2026

copyStack

Write a method copyStack that takes a stack, s, of integers as a
parameter and returns a copy, s2, of the original stack (i.e., a new
stack with the same values as the original, stored in the same order as

the original).
Your method should create the new stack and fill it up with the same

values that are stored in the original stack. It is not acceptable to
return the same stack passed to the method; you must create, fill, and

return a new stack.

You may alter the stack parameter throughout your method, but by
the end, it must have the same elements in the same order.

You may use one queue as auxiliary storage.

CSE 122 Winter 2026 sli.do #csel22

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice

Lecture Outline

* Ahnouncements
* Quick Recap

* copyStack Review

* Structured Example: spliceStack

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Exceptions

 Sometimes we want to limit someone’s input into our method to
“valid” options we define
- Previously printed out “hey don’t do that” messages which isn’t great...

* Allow us to “fail fast” and immediately halt execution
* No longer need to wrap code in conditionals
e Can include custom error messages about what went wrong

if (/* invalid input */) {
throw new IllegalArgumentException("Error Message");

¥

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice CSE 122 Winter 2026 sli.do #csel22

Lecture Outline

* Announcements
* Quick Recap
* copyStack Review

* Exceptions

YW UNIVERSITY of WASHINGTON LEC 07: Stacks & Queues Practice

CSE 122 Winter 2026

spliceStack

Write a method called spliceStack that takes as parameters a stack

of integers s, a start position i, and an ending position j, and that
removes a sequence of elements from s starting at the 1’th element

from the bottom of the stack up to (but not including) the j’th element

from the bottom of the stack (where position O is the bottom of the

stack), returning these values in a new stack, s2. The ordering of

elements in both stacks should be preserved.
top

—— spliceStack(s, 1, 3)——

| Al WIN] O

bottom

n

top

bottom

3

4

top

bottom

New stack s2 returned

by method

sli.do #csel22

	Slide 1: Stacks & Queues Practice
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Stacks & Queues
	Slide 6: Fundamental Data Structures ➔ Problem Solving
	Slide 7: Common Problem-Solving Strategies
	Slide 8: Metacognition
	Slide 9: Common Stack & Queue Patterns
	Slide 10: Lecture Outline
	Slide 11: copyStack
	Slide 12: Lecture Outline
	Slide 13: Exceptions
	Slide 14: Lecture Outline
	Slide 15: spliceStack

