
LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

CSE 122
L E C 0 6

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructor:

TAs:

Adrian Salguero

122 26Wi Lecture Tunes

Music: 122 26Wi Lecture Tunes

Ava
Blake R
Blake P
Cady
Caleb
Cole
Colin
Connor

Dalton
Dani
David
Diya
Hanna
Ivy
Mahima
Medha

Neal
Neha
Nicolae
Nicole
Rio
Rohan
Saachi
Shreya

Shreyank
Sthiti
Sushma
Suyash
TJ
Wesley
Yang

Stacks & Queues

Slido vote & chat with neighbors:
Best place for cheap eats on the Ave?

on Campus?

BEFORE WE START

https://open.spotify.com/playlist/0uOENHkoLcs2xauEhye9em?si=5viM0_DhRceDGjKqL2l-1A&nd=1&dlsi=37b72745d58e4c62

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Lecture Outline

• Announcements

• Review: ADTs, Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Announcements
• Quizzes

- Quiz 0 was yesterday

- Feedback releasing sometime before Quiz 1 (February 17th)

- Metacognition: How did it go? Was your studying and preparation effective?

• Creative Project 1 is due tomorrow by 11:59pm PT

• Programming Assignment 1 releasing on Friday
- Focus on Stacks & Queues

- Due Thursday, February 5th by 11:59pm PT

• Resub 0 closed yesterday (Tuesday), but Resub 1 will open tomorrow!

- C0, P0 eligible for R1

• Viewing feedback in Ed
- Having difficulty finding it? Don’t know how to see your grade? Go to IPL or ask

your section TA! This feedback is super important! Don’t miss out on it!

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Lecture Outline

• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

(PCM) Stacks & Queues

• PCM focused on these new data structures!

• Some collections are constrained, only use optimized (but limited) operations
- Stack: retrieves elements in reverse order as added

- Queue: retrieves elements in same order as added

• Why optimize? Think dedicated tool instead of a Swiss Army knife

queue

front back

1 2 3
addremove, peek

stack

top 3

2

bottom 1

pop, peekpush

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

(PCM) Abstract Data Types

• Abstract Data Type (ADT): A specification of a collection of data and
the operations that can be performed on it.

- Describes what a collection does, not how it does it (not implementation!)

- Think of it as an idea of a data type

• We don't know exactly how a stack or queue is implemented, and we
don't need to!

- Only need to understand high-level idea of what a collection does

- Stack: retrieves elements in reverse order as added.

- Queue: retrieves elements in same order as added.

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Wait, ADT? Interfaces?
• Abstract Data Type (ADT): A description of the idea of a data

structure including what operations are available on it and how those
operations should behave. For example, the English explanation of
what a list should be.

• Interface: Java construct that lets programmers specify what methods
a class should have. For example the List interface in java.

• Implementation: Concrete code that meets the specified interface.
For example, the ArrayList and LinkedList classes that
implement the List interface.

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

(PCM) Stacks
• Stack: A collection based on the principle of adding elements and

retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")
- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine the last element added (the "top")

Basic Stack operations:

• push: Add an element to the top

• pop: Remove the top element

• peek: Examine the top element
push

bottom

top

pop

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Stacks in Computer Science
• Programming languages and compilers:

- method calls are placed onto a stack (call push, return pop)
- compilers use stacks to evaluate expressions

• Operating Systems:
- Call stacks → memory stack for processes’ data

• Matching up related pairs of things:
- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

(PCM) Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c");

System.out.println(s.pop());

- Stack has other methods that we will ask you not to use

Stack<E>() constructs a new stack with elements of type E

push(value) places given value on top of stack

pop() removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek() returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size() returns number of elements in stack

isEmpty() returns true if stack has no elements
"a"

"b"

"c"

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

(PCM) Queue

• Queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only examine/remove
the front of the queue.

• Basic Queue operations:
- add (enqueue): Add an element to the back.

- remove (dequeue): Remove the front element.

- peek: Examine the front element.

add

remove

front back

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Queues in Computer Science
• Operating systems:

- Queue of print jobs to send to the printer
- Queue of programs / processes to be run
- Queue of network data packets to send

• Computer Architecture
- Miss status/handling register (MSHR) queue
- Instruction fetch queue
- Issue queue
- Instruction pipeline in general!

• Programming:
- Modeling a line of customers or clients
- Storing a queue of computations to be performed in order

• Real world examples:
- People on an escalator or waiting in a line
- Cars at a gas station (or on an assembly line)

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

(PCM) Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);

q.add(-3);

q.add(17);

System.out.println(q.remove());

 IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object. (More on that with Interfaces.)

add(value) places given value at back of queue

remove() removes value from front of queue and returns it;
throws a NoSuchElementException if queue is
empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

42 -3 17

front back

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Lecture Outline

• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Lecture Outline

• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Lecture Outline

• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Problem Solving

• On their own, Stacks & Queues are
quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is
easier?

- Just looping over a queue and printing elements

LEC 06: Stacks & Queues CSE 122 Winter 2026 sli.do #cse122

Common Stack & Queue Patterns

• Stack → Queue and Queue → Stack
- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S

• “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times

- Careful: Watch your loop bounds when queue’s size changes

• A “splitting” loop that moves some values to the Stack and others to
the Queue

	Slide 1: Stacks & Queues
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: (PCM) Stacks & Queues
	Slide 6: (PCM) Abstract Data Types
	Slide 7: Wait, ADT? Interfaces?
	Slide 8: (PCM) Stacks
	Slide 9: Stacks in Computer Science
	Slide 10: (PCM) Programming with Stacks
	Slide 11: (PCM) Queue
	Slide 12: Queues in Computer Science
	Slide 13: (PCM) Programming with Queues
	Slide 14: Lecture Outline
	Slide 15: Lecture Outline
	Slide 20: Lecture Outline
	Slide 21: Problem Solving
	Slide 22: Common Problem-Solving Strategies
	Slide 23: Common Stack & Queue Patterns

