
CSE 122 Spring 2025LEC 09: Maps

CSE 122
LEC 09

Questions during Class?

Raise hand or send here

sli.do #cse122

Brett Wortzman and Adrian SalgueroInstructor:

TAs: Andrew
Anya
Brittan
Carson
Christopher
Colin
Dalton
Daniel

Diya
Elizabeth
Ivory
Jack
Jacob
Ken
Kyle
Leo

Logan
Mahima
Medha
Minh
Nicole
Samuel
Shivani
Sreshta

Steven
Yang

Maps

Chat with neighbors:

What is your favorite way to eat a
potato?

BEFORE WE START

Music: 122 25sp Lecture Tunes

https://open.spotify.com/playlist/5jyHCvYzPfVxzv0oylIYut?si=a9d820106e01498d

CSE 122 Spring 2025LEC 09: Maps

Lecture Outline

• Announcements

• Sets, Iterators, For-each Loop Review

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Spring 2025LEC 09: Maps

Announcements

•Reminder: Quiz 1 is Tuesday, May 13th

- Quiz 0 results coming soon!

•Resubmission Cycle 2 (R2) form open now
- Due Tuesday, May 6th by 11:59 PM
- Eligible Assignments: C0, P0, C1

•Programming Assignment 2 (P2) releasing later
today!

- Due Thursday, May 15th by 11:59pm

CSE 122 Spring 2025LEC 09: Maps

Lecture Outline

• Announcements

• Sets, Iterators, For-each Loop Review

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Spring 2025LEC 09: Maps

Sets (ADT)

•A collection of unique values (no duplicates allowed)
that can perform the following operations efficiently:

- add
- remove
- search (contains)

•We don’t think of a set as having indices; we just add
things to the set in general and don’t worry about
order

"hi"

"hello"

"hola"

"bonjour"

"konnichiwa"

CSE 122 Spring 2025LEC 09: Maps

Sets in Java

•Set is an interface in Java
- In java.util

•HashSet and TreeSet are classes that implement
the Set interface in Java

- HashSet: Very fast! Implemented using a “hash table” array
- Elements are stored in an unpredictable order

- TreeSet: Pretty fast! Implemented using a “binary search tree”
- Elements are stored in sorted order

CSE 122 Spring 2025LEC 09: Maps

Set Methods

Method Description

add(value) Adds the given value to the set, returns whether or not
the given value was added successfully

contains(value) Returns true if the given value is found in this set

remove(value) Removes the given value from the set; returns true if
the set contained the value, false if not

clear() Removes all elements from the set

size() Returns the number of elements in list

isEmpty() Returns true if the set’s size is 0; false otherwise

toString() Returns a String representation of the set such as
"[3, 42, -7, 15]"

CSE 122 Spring 2025LEC 09: Maps

For-Each Loop
A new kind of loop!

Set<String> words = new HashSet<>();
for (String s : words) {
 System.out.println(s);

}

• BUT, you cannot modify the data structure inside a for-each
loop

- You will get a ConcurrentModificationException
- They are “read-only”

CSE 122 Spring 2025LEC 09: Maps

Iterators

• Returned by the iterator() method

• You must use the iterator’s remove() method to remove
things from what you’re iterating over – otherwise you will
get a ConcurrentModificationException

Methods Description

hasNext() Returns true if there are more elements for the iterator
to return

next() Returns the next element in the iteration

remove() Removes and returns the element that was last returned
by next()

CSE 122 Spring 2025LEC 09: Maps

Iterators
A new object that has access to all of the elements of a given
collection and gives them to you one at a time—and it lets you
modify the collection!

Set<String> lyrics = new HashSet<>();
Iterator<String> itr = lyrics.iterator();
while (itr.hasNext()) {
 String next = itr.next();
 if (next.contains("woo")) {
 itr.remove();
 }
}

CSE 122 Spring 2025LEC 09: Maps

Lecture Outline

• Announcements

• Sets, Iterators, For-each Loop Review

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Spring 2025LEC 09: Maps

Map ADT

• Data structure to map keys to values
- Keys can be any* type; Keys must be unique

- Values can be any type

• Operations
- put(key, value): Associate key to value

- Overwrites duplicate keys

- get(key): Get value for key

- remove(key): Remove key/value pair

*Same as Python’s dict

CSE 122 Spring 2025LEC 09: Maps

Programming with Maps in Java

• Interface: Map

• Implementations: TreeMap, HashMap

// Making a Map

Map<String, String> favArtistToSong = new TreeMap<>();

// adding elements to the above Map

favArtistToSong.put("Stromae", "Ma Meilleure Ennemie");

favArtistToSong.put("Aitana", "Segundo Intento");

favArtistToSong.put("Laufey", "Promise");

// Getting a value for a key

String song = favArtistToSong.get("Aitana");

System.out.println(song);

CSE 122 Spring 2025LEC 09: Maps

Programming with Maps in Java
Methods Description

put(key, value) adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

CSE 122 Spring 2025LEC 09: Maps

Map Implementations

• Our first data structures with marked differences in how their
implementations behave

• One Map ADT / Interface

• Two Map implementations
- TreeMap – Pretty fast, and sorted keys

- HashMap – Extremely fast, unsorted keys

Map<String, Integer> map1 = new TreeMap<>();

Map<String, Integer> map2 = new HashMap<>();

...

CSE 122 Spring 2025LEC 09: Maps

sli.do #cse122Practice : Think

Select the method calls required to modify the given
map m as follows:
Assume m’s contents are
 98030="Kent"
 98178="Seattle"
 98166="Burien"
 98041="Bothell"

We want to modify m so that its contents are
 98030="Kent"
 98178="Tukwila"
 98166="Burien"
 98041="Bothell"
 98101="Seattle"
 98126="Seattle"

A. m.put(98178, "Tukwila");

B. m.remove(98178);

C. m.put(98126, "Seattle");

D. m.get(98178, "Seattle");

E. m.put(98101, "Seattle");

CSE 122 Spring 2025LEC 09: Maps

sli.do #cse122Practice : Pair

Select the method calls required to modify the given
map m as follows:
Assume m’s contents are
 98030="Kent"
 98178="Seattle"
 98166="Burien"
 98041="Bothell"

We want to modify m so that its contents are
 98030="Kent"
 98178="Tukwila"
 98166="Burien"
 98041="Bothell"
 98101="Seattle"
 98126="Seattle"

A. m.put(98178, "Tukwila");

B. m.remove(98178);

C. m.put(98126, "Seattle");

D. m.get(98178, "Seattle");

E. m.put(98101, "Seattle");

CSE 122 Spring 2025LEC 09: Maps

Lecture Outline

• Announcements

• Sets, Iterators, For-each Loop Review

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Spring 2025LEC 09: Maps

Lecture Outline

• Announcements

• Sets, Iterators, For-each Loop Review

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Spring 2025LEC 09: Maps

joinRosters
Write a method joinRosters that combines a Map from student name to quiz
section, and a Map from TA name to quiz section and prints all pairs of
students/TAs.

For example, if studentSections stores the following map:

{Alan=AC, Jerry=AB, Yueying=AA, Sharon=AB, Steven=AB, Zewditu=BA}

And taSections stores the following map

{Ayush=BA, Marcus=AA, Aishah=AB, Chaafen=AC} AC: Alan - Chaafen
AB: Jerry - Aishah
AB: Sharon - Aishah
AB: Steven - Aishah
AA: Yueying – Marcus
BA: Zewditu – Ayush

CSE 122 Spring 2025LEC 09: Maps

Lecture Outline

• Announcements

• Map Review

• Debrief PCM: Sets, Iterators, For-each Loop

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 Spring 2025LEC 09: Maps

mostFrequentStart

Write a method called mostFrequentStart that takes a Set of words and
does the following steps:

• Organizes words into “word families” based on which letter they start
with

• Selects the largest “word family” as defined as the family with the
most words in it

• Returns the starting letter of the largest word family (and if time,
should update the Set of words to only have words from the selected
family).

CSE 122 Spring 2025LEC 09: Maps

mostFrequentStart
For example, if the Set words stored the values
["hello", "goodbye", "library", "literary", "little", "repel"]

The word families produced would be
'h' -> 1 word ("hello")

'g' -> 1 word ("goodbye")

'l' -> 3 words ("library", "literary", "little")

'r' -> 1 word ("repel")

Since 'l' has the largest word family, we return 'l' and modify the Set
to only contain Strings starting with 'l'.

	Default Section
	Slide 1: Maps
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Sets (ADT)
	Slide 6: Sets in Java
	Slide 7: Set Methods
	Slide 8: For-Each Loop
	Slide 9: Iterators
	Slide 10: Iterators
	Slide 11: Lecture Outline
	Slide 12: Map ADT
	Slide 13: Programming with Maps in Java
	Slide 14: Programming with Maps in Java
	Slide 15: Map Implementations
	Slide 16: Select the method calls required to modify the given map m as follows:
	Slide 17: Select the method calls required to modify the given map m as follows:
	Slide 18: Lecture Outline
	Slide 19: Lecture Outline
	Slide 20: joinRosters
	Slide 21: Lecture Outline
	Slide 22: mostFrequentStart
	Slide 23: mostFrequentStart

