
CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

CSE 122
LEC 07

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructor:

TAs:

Elba Garza
Sreshta
William
Arjun
Dani
Rohan
Andrew
Saachi
Ava

Merav
Nicole
Vrinda
Shreya
Wesley
Isis
Colin
Medha

Shivani
Naomi
Hanna
David
Sushma
Rio
Nicolae
Ivory

Yang
Cady
Diya
Katharine

122 25au Lecture Tunes

Music: 122 25au Lecture Tunes 🪩Stacks & Queues Practice

Slido vote & chat with neighbors:
What food could you only eat happily

for the rest of your life?

BEFORE WE START

https://open.spotify.com/playlist/21267VkywPpFSeWDnuRnoj

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Announcements

• Creative Project 1 was due yesterday, how’d it go?
• Programming Assignment 1 releasing later tonight

- Focusing on Stacks and Queues!

• Resubmission Cycle 1 form posted!
- Due October 21st by 11:59pm PT

- Eligible assignments: C0, P0

https://forms.gle/iSmK6C31t55YnqPu9
https://forms.gle/iSmK6C31t55YnqPu9

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Stacks & Queues

• Some collections are constrained, only use optimized operations
- Stack: retrieves elements in reverse order as added

- Queue: retrieves elements in same order as added

queue

front back

1 2 3
addremove

stack

top 3

2

bottom 1

poppush

peek

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Fundamental Data Structures ➔ Problem Solving

• On their own, Stacks & Queues are
quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that
is easier?

- Just looping over a queue and printing elements

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Metacognition
• Metacognition: asking questions about your solution process.

• Examples:
- While debugging: explain to yourself why you’re making this change to your

program.
- Before running your program: make an explicit prediction of what you expect

to see.
- When coding: be aware when you’re not making progress, so you can take a

break or try a different strategy.
- When designing:

- Explain the tradeoffs with using a different data structure or algorithm.
- If one or more requirements change, how would the solution change as a result?
- Reflect on how you ruled out alternative ideas along the way to a solution.

- When studying: what is the relationship of this topic to other ideas in the
course?

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Common Stack & Queue Patterns

• Stack → Queue and Queue → Stack
- We give you helper methods for these on problems

• Reverse a Stack with a S→Q move & then a Q→S move

• “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back a total of size times

- Careful: Watch your loop bounds when a queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to
the Queue

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

copyStack
Write a method copyStack that takes a stack, s, of integers as a
parameter and returns a copy, s2, of the original stack (i.e., a new
stack with the same values as the original, stored in the same order as
the original).

Your method should create the new stack and fill it up with the same
values that are stored in the original stack. It is not acceptable to
return the same stack passed to the method; you must create, fill, and
return a new stack.

You may alter the stack parameter throughout your method, but by
the end, it must have the same elements in the same order.

You may use one queue as auxiliary storage.

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

• Sometimes we want to limit someone’s input into our method to
“valid” options we define

- Previously printed out “hey don’t do that” messages which isn’t great…

• Allow us to “fail fast” and immediately halt execution

• No longer need to wrap code in conditionals

• Can include custom error messages about what went wrong

if (/* invalid input */) {
throw new IllegalArgumentException("Error Message");

}

Exceptions

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Autumn 2025LEC 07: Stacks & Queues Practice

spliceStack

Write a method called spliceStack that takes as parameters a stack
of integers s, a start position i, and an ending position j, and that
removes a sequence of elements from s starting at the i’th element
from the bottom of the stack up to (but not including) the j’th element
from the bottom of the stack (where position 0 is the bottom of the
stack), returning these values in a new stack, s2. The ordering of
elements in both stacks should be preserved.

stack

top

6 4

2 3

3 2

4 1

bottom 1 0

spliceStack(s, 1, 3)

s

top

3

bottom 4

New stack s2 returned
by method

top

6 2

2 1

bottom 1 0

s

	Slide 1: Stacks & Queues Practice
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Stacks & Queues
	Slide 6: Fundamental Data Structures ➔ Problem Solving
	Slide 7: Common Problem-Solving Strategies
	Slide 8: Metacognition
	Slide 9: Common Stack & Queue Patterns
	Slide 10: Lecture Outline
	Slide 11: copyStack
	Slide 12: Lecture Outline
	Slide 13: Exceptions
	Slide 14: Lecture Outline
	Slide 15: spliceStack

