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Lecture Outline

* Review: ADTs, Stacks & Queues
* Queue Manipulation

e Stack Manipulation

- Problem Solving
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Announcements

* Quizzes
- Quiz 0 was yesterday
- Feedback releasing sometime before Quiz 1 (November 4t")
- Metacognition: How did it go? Was your studying and preparation effective?

* Creative Project 1 is due tomorrow by 11:59pm PT

* Programming Assighment 1 releasing on Friday

- Focus on Stacks & Queues
- Due Thursday, October 23" by 11:59pm PT

e Resub O closed yesterday (Tuesday), but Resub 1 will open tomorrow!
- CO, PO eligible for R1

* Viewing feedback in Ed

- Having difficulty finding it? Don’t know how to see your grade? Go to IPL or ask
your section TA! This feedback is super important! Don’t miss out on it!
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(PCM) Stacks & Queues

e PCM focused on these new data structures!

* Some collections are constrained, only use optimized (but limited) operations
- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added |
 Why optimize? Think dedicated tool instead of a Swiss Army knife ’/
push pop, peek
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(PCM) Abstract Data Types

» Abstract Data Type (ADT): A specification of a collection of data and
the operations that can be performed on it.
- Describes what a collection does, not how it does it (not implementation!)

- Think of it as an ¥>idea %> of a data type

 We don't know exactly how a stack or queue is implemented, and we
don't need to!

- Only need to understand high-level idea of what a collection does

- Stack: retrieves elements in reverse order as added.
- Queue: retrieves elements in same order as added.
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Wait, ADT? Interfaces?

» Abstract Data Type (ADT): A description of the idea of a data
structure including what operations are available on it and how those
operations should behave. For example, the English explanation of
what a list should be.

* Interface: Java construct that lets programmers specify what methods
a class should have. For example the List interface in java.

* Implementation: Concrete code that meets the specified interface.
For example, the ArraylList and LinkedList classes that
implement the L1st interface.
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(PCM) Stacks

 Stack: A collection based on the principle of adding elements and
retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")

- Elements are stored in order of insertion.
- We do not think of them as having indexes.
- Client can only add/remove/examine the last element added (the "top")

Basic Stack operations: top
* push: Add an element to the top
* pop: Remove the top element
push pop

* peek: Examine the top element

bottom
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Stacks in Computer Science

* Programming languages and compilers:

- method calls are placed onto a stack (call<>push, return <> pop)
- compilers use stacks to evaluate expressions

* Operating Systems:
- Call stacks - memory stack for processes’ data

* Matching up related pairs of things:

- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

e Sophisticated algorithmes:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations
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(PCM) Programming with Stacks

Stack<E> () |constructs a new stack with elements of type E
push (value) | places given value on top of stack
e pop () removes top value from stack and returns it;
throws EmptyStackException if stack is empty
" peek () returns top value from stack without removing it;
throws EmptyStackException if stack is empty
g size () returns number of elements in stack
isEmpty () returns true if stack has no elements

—P Stack<String> s = new Stack<String>();
s.push ("a");
s.push ("b") ;

=P s .push ("c");

—p System.out.println(s.pop());

- Stack has other methods that we will ask you not to use
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(PCM) Queue

* Queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only examine/remove
the front of the queue.

* Basic Queue operations:
- add (enqueue): Add an element to the back. remove

- remove (dequeue): Remove the front element.
- peek: Examine the front element.

back
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Queues in Computer Science

* Operating systems:
- Queue of print jobs to send to the printer
- Queue of programs / processes to be run
- Queue of network data packets to send

 Computer Architecture
- Miss status/handling register (MSHR) queue
- Instruction fetch queue
- Issue queue
- Instruction pipeline in general!

* Programming:
- Modeling a line of customers or clients
- Storing a queue of computations to be performed in order

e Real world examples:
- People on an escalator or waiting in a line
- Cars at a gas station (or on an assembly line)
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(PCM) Programming with Queues

add (value) | places given value at back of queue
front back remove () removes value from front of queue and returns it;

throws a NoSuchElementException if queue is
empty

peek () returns front value from queue without removing it;

42 -3 17 returns null if queue is empty
size () returns number of elements in queue
isEmpty () returns true if queue has no elements

=p Queue<Integer> g = new LinkedList<Integer>();
g.add (42) ;
g.add (-3) ;

=P qg.add (17) ;

=—$ System.out.println (g.remove()) ;

A IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object. (More on that with Interfaces.)
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 Review: Stacks & Queues

e Stack Manipulation

- Problem Solving
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Problem Solving

* On their own, Stacks & Queues are [ .. I
quite simple with practice

Reinterpret / Understand the problem
(few methods, simple model) I
° Some Of the prObIemS We aSk are ...orexamples/hintsfiomanotherrescurce A
complex because the tools you have —

to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

Evaluate the solution

h 4

A R S

Implement the solution Remember:

1 Failure to implement something right
is part of the process!

* We challenge you on purpose here
to practice problem solving

A 4

This is non-liner -- jump up to previous stages as much as you need!

»

Evaluate the implementation

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance
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Common Problem-Solving Strategies

* Analogy — Is this similar to a problem you’ve seen?
- sum(Stack) is probably a lot like sum(Queue), start there!

* Brainstorming — Consider steps to solve problem before writing code
- Try to do an example “by hand” - outline steps

* Solve Sub-Problems — Is there a smaller part of the problem to solve?
- Move to queue first

* Debugging — Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

* |terative Development — Can we start by solving a different problem that is
easier?
- Just looping over a queue and printing elements
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Common Stack & Queue Patterns

e Stack > Queue and Queue - Stack

- We give you helper methods for this on problems
* Reverse a Stack with aS->Q + Q—>S

* “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times

- Careful: Watch your loop bounds when queue’s size changes

* A “splitting” loop that moves some values to the Stack and others to
the Queue
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