YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Slido vote & chat with neighbors:
Best place for cheap eats on the Ave?
on Campus?

CSE 122

Stacks & Queues Music: 122 25au Lecture Tunes @

Instructor: Elba Garza

TAS: Sreshta Merav Shivani Yang
William Nicole Naomi Cady
Arjun Vrinda Hanna Diya
Dani Shreya David Katharine
Rohan Wesley Sushma
Andrew Isis Rio
Saachi Colin Nicolae
Ava Medha Ivory

Raise hand or send here

sli.do #csel22

https://open.spotify.com/playlist/21267VkywPpFSeWDnuRnoj

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Lecture Outline

* Review: ADTs, Stacks & Queues
* Queue Manipulation

e Stack Manipulation

- Problem Solving

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Announcements

* Quizzes
- Quiz 0 was yesterday
- Feedback releasing sometime before Quiz 1 (November 4t")
- Metacognition: How did it go? Was your studying and preparation effective?

* Creative Project 1 is due tomorrow by 11:59pm PT

* Programming Assighment 1 releasing on Friday

- Focus on Stacks & Queues
- Due Thursday, October 23" by 11:59pm PT

e Resub O closed yesterday (Tuesday), but Resub 1 will open tomorrow!
- CO, PO eligible for R1

* Viewing feedback in Ed

- Having difficulty finding it? Don’t know how to see your grade? Go to IPL or ask
your section TA! This feedback is super important! Don’t miss out on it!

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Lecture Outline

* Announcements

* Queue Manipulation

e Stack Manipulation

- Problem Solving

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

(PCM) Stacks & Queues

e PCM focused on these new data structures!

* Some collections are constrained, only use optimized (but limited) operations
- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added |
 Why optimize? Think dedicated tool instead of a Swiss Army knife ’/
push pop, peek

N

front back
k
top| 3 remove, pee : > 3 add
2
bottom| 1
gueue

stack

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

(PCM) Abstract Data Types

» Abstract Data Type (ADT): A specification of a collection of data and
the operations that can be performed on it.
- Describes what a collection does, not how it does it (not implementation!)

- Think of it as an ¥>idea %> of a data type

 We don't know exactly how a stack or queue is implemented, and we
don't need to!

- Only need to understand high-level idea of what a collection does

- Stack: retrieves elements in reverse order as added.
- Queue: retrieves elements in same order as added.

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Wait, ADT? Interfaces?

» Abstract Data Type (ADT): A description of the idea of a data
structure including what operations are available on it and how those
operations should behave. For example, the English explanation of
what a list should be.

* Interface: Java construct that lets programmers specify what methods
a class should have. For example the List interface in java.

* Implementation: Concrete code that meets the specified interface.
For example, the ArraylList and LinkedList classes that
implement the L1st interface.

CSE 122 Autumn 2025

YA UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues

(PCM) Stacks

 Stack: A collection based on the principle of adding elements and
retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")

- Elements are stored in order of insertion.
- We do not think of them as having indexes.
- Client can only add/remove/examine the last element added (the "top")

Basic Stack operations: top
* push: Add an element to the top
* pop: Remove the top element
push pop

* peek: Examine the top element

bottom

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Stacks in Computer Science

* Programming languages and compilers:

- method calls are placed onto a stack (call<>push, return <> pop)
- compilers use stacks to evaluate expressions

* Operating Systems:
- Call stacks - memory stack for processes’ data

* Matching up related pairs of things:

- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

e Sophisticated algorithmes:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

(PCM) Programming with Stacks

Stack<E> () |constructs a new stack with elements of type E
push (value) | places given value on top of stack
e pop () removes top value from stack and returns it;
throws EmptyStackException if stack is empty
" peek () returns top value from stack without removing it;
throws EmptyStackException if stack is empty
g size () returns number of elements in stack
isEmpty () returns true if stack has no elements

—P Stack<String> s = new Stack<String>();
s.push ("a");
s.push ("b") ;

=P s .push ("c");

—p System.out.println(s.pop());

- Stack has other methods that we will ask you not to use

LEC 06: Stacks & Queues CSE 122 Autumn 2025

YA/ UNIVERSITY of WASHINGTON

(PCM) Queue

* Queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only examine/remove
the front of the queue.

* Basic Queue operations:
- add (enqueue): Add an element to the back. remove

- remove (dequeue): Remove the front element.
- peek: Examine the front element.

back

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Queues in Computer Science

* Operating systems:
- Queue of print jobs to send to the printer
- Queue of programs / processes to be run
- Queue of network data packets to send

 Computer Architecture
- Miss status/handling register (MSHR) queue
- Instruction fetch queue
- Issue queue
- Instruction pipeline in general!

* Programming:
- Modeling a line of customers or clients
- Storing a queue of computations to be performed in order

e Real world examples:
- People on an escalator or waiting in a line
- Cars at a gas station (or on an assembly line)

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

(PCM) Programming with Queues

add (value) | places given value at back of queue
front back remove () removes value from front of queue and returns it;

throws a NoSuchElementException if queue is
empty

peek () returns front value from queue without removing it;

42 -3 17 returns null if queue is empty
size () returns number of elements in queue
isEmpty () returns true if queue has no elements

=p Queue<Integer> g = new LinkedList<Integer>();
g.add (42) ;
g.add (-3) ;

=P qg.add (17) ;

=—$ System.out.println (g.remove()) ;

A IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object. (More on that with Interfaces.)

LEC 06: Stacks & Queues CSE 122 Autumn 2025

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

* Announcements

 Review: Stacks & Queues

e Stack Manipulation

- Problem Solving

LEC 06: Stacks & Queues CSE 122 Autumn 2025

YA/ UNIVERSITY of WASHINGTON

Lecture Outline

* Announcements
e Review: Stacks & Queues

* Queue Manipulation

- Problem Solving

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Lecture Outline

* Announcements
e Review: Stacks & Queues
* Queue Manipulation

e Stack Manipulation

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Problem Solving

* On their own, Stacks & Queues are [.. I
quite simple with practice

Reinterpret / Understand the problem
(few methods, simple model) I
° Some Of the prObIemS We aSk are ...orexamples/hintsfiomanotherrescurce A
complex because the tools you have —

to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

Evaluate the solution

h 4

A R S

Implement the solution Remember:

1 Failure to implement something right
is part of the process!

* We challenge you on purpose here
to practice problem solving

A 4

This is non-liner -- jump up to previous stages as much as you need!

»

Evaluate the implementation

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Common Problem-Solving Strategies

* Analogy — Is this similar to a problem you’ve seen?
- sum(Stack) is probably a lot like sum(Queue), start there!

* Brainstorming — Consider steps to solve problem before writing code
- Try to do an example “by hand” - outline steps

* Solve Sub-Problems — Is there a smaller part of the problem to solve?
- Move to queue first

* Debugging — Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

* |terative Development — Can we start by solving a different problem that is
easier?
- Just looping over a queue and printing elements

YA/ UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Autumn 2025

Common Stack & Queue Patterns

e Stack > Queue and Queue - Stack

- We give you helper methods for this on problems
* Reverse a Stack with aS->Q + Q—>S

* “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times

- Careful: Watch your loop bounds when queue’s size changes

* A “splitting” loop that moves some values to the Stack and others to
the Queue

	Slide 1: Stacks & Queues
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: (PCM) Stacks & Queues
	Slide 6: (PCM) Abstract Data Types
	Slide 7: Wait, ADT? Interfaces?
	Slide 8: (PCM) Stacks
	Slide 9: Stacks in Computer Science
	Slide 10: (PCM) Programming with Stacks
	Slide 11: (PCM) Queue
	Slide 12: Queues in Computer Science
	Slide 13: (PCM) Programming with Queues
	Slide 14: Lecture Outline
	Slide 15: Lecture Outline
	Slide 20: Lecture Outline
	Slide 21: Problem Solving
	Slide 22: Common Problem-Solving Strategies
	Slide 23: Common Stack & Queue Patterns

