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campus? 
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- Problem Solving
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Announcements

• Quizzes
- Feedback released in a couple weeks

- Metacognition: Did it go like you wanted?

• Creative Project 1 is due tomorrow by 11:59pm

• Programming Assignment 1 releasing on Friday
- Due next Thursday, February 1st by 11:59pm 

• Resubmission Cycle 1 opens tonight
- Eligible assignments: C0 and P0 (upon P0 feedback being released)

• Friday lecture we’re going to get mid-quarter feedback from you
- Will still be touching on required content, so don’t skip!

• Viewing feedback in Ed…
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Stacks & Queues

• PCM focused on these new data structures!

• Some collections are constrained, only use optimized (but limited) operations
- Stack: retrieves elements in reverse order as added

- Queue: retrieves elements in same order as added

queue

front back

1 2 3
addremove, peek

stack

top 3

2

bottom 1

pop, peekpush
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Abstract Data Types

• Abstract Data Type (ADT): A specification of a collection of data and 
the operations that can be performed on it.

- Describes what a collection does, not how it does it (not implementation!)

- Think of it as an idea of a data type

• We don't know exactly how a stack or queue is implemented, and we 
don't need to.

- Only need to understand high-level idea of what a collection does

- Stack: retrieves elements in reverse order as added. 

- Queue: retrieves elements in same order as added. 
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Wait, ADT? Interfaces?

• Abstract Data Type (ADT): A description of the idea of a data 
structure including what operations are available on it and how those 
operations should behave. For example, the English explanation of 
what a list should be.

• Interface: Java construct that lets programmers specify what methods 
a class should have. For example the List interface in java.

• Implementation: Concrete code that meets the specified interface. 
For example, the ArrayList and LinkedList classes that 
implement the List interface.
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Stacks
• Stack: A collection based on the principle of adding elements and 

retrieving them in the opposite order.
- Last-In, First-Out ("LIFO") 
- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine the last element added (the "top")

Basic Stack operations:

• push: Add an element to the top

• pop: Remove the top element

• peek: Examine the top element
push

bottom

top

pop
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Stacks in Computer Science

• Programming languages and compilers:
- method calls are placed onto a stack (call↔push, return ↔ pop)

- compilers use stacks to evaluate expressions

• Matching up related pairs of things:
- find out whether a string is a palindrome

- examine a file to see if its braces { } match

- convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
- searching through a maze with "backtracking”

- many programs use an "undo stack" of previous operations
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Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c");   

System.out.println(s.pop());

- Stack has other methods that we will ask you not to use 😬

Stack<E>() constructs a new stack with elements of type E

push(value) places given value on top of stack

pop() removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek() returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size() returns number of elements in stack

isEmpty() returns true if stack has no elements
"a"

"b"

"c"
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Queue

• Queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only examine/remove 
the front of the queue.

• Basic Queue operations:
- add (enqueue): Add an element to the back.

- remove (dequeue): Remove the front element.

- peek: Examine the front element.

add

remove

front back
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Queues in Computer Science

• Operating systems:
- queue of print jobs to send to the printer

- queue of programs / processes to be run

- queue of network data packets to send

• Programming:
- modeling a line of customers or clients

- storing a queue of computations to be performed in order

• Real world examples:
- people on an escalator or waiting in a line

- cars at a gas station (or on an assembly line)
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Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);

q.add(-3);

q.add(17);       

System.out.println(q.remove());

🚨 IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object. (More on that with Interfaces.)

add(value) places given value at back of queue

remove() removes value from front of queue and returns it;
throws a NoSuchElementException if queue is 
empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

42-317
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sli.do #cse122Practice : Think

What does this method return?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
numbers.push(number);

}

return total;
}

A) 0
B) 5
C) 15
D) 25
E) Error /

Exception
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sli.do #cse122Practice : Pair

What does this method return?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
numbers.push(number);

}

return total;
}

A) 0
B) 5
C) 15
D) 25
E) Error /

Exception
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sli.do #cse122Practice : Think

What does this method return?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
q.add(number);

}

return total;
}

A) 0
B) 5
C) 12
D) 15
E) Error /

Exception
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Problem Solving

• On their own, Stacks & Queues are
quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance 
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Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps 

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is 
easier?

- Just looping over a queue and printing elements
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Common Stack & Queue Patterns

• Stack → Queue and Queue → Stack
- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S 

• “Cycling” a queue: Inspect each element by repeatedly removing and 
adding to back size times

- Careful: Watch your loop bounds when queue’s size changes

• A “splitting” loop that moves some values to the Stack and others to 
the Queue


