
CSE 122 Winter 2024LEC 06: Stacks & Queues

CSE 122
L E C 0 6

Questions during Class?

Raise hand or send here

sli.do #cse122

Miya Natsuhara and Joe SpaniacInstructors

TAs Ailsa
Alexander
Ambika
Andy
Arkita
Atharva
Autumn
Ayush

Chaafen
Chloe
Claire
Colin
Colton
Connor
Elizabeth
Hannah

Helena
Jessie
Katharine
Kavya
Ken
Kyle
Logan
Marcus

Megana
Mia
Minh
Nicolas
Poojitha
Rohini
Ronald
Rucha

Sahej
Shivani
Smriti
Steven
Vinay
Zane

Stacks & Queues

Talk to your neighbors:
Best place for boba on the Ave? near

campus?

BEFORE WE START

Music: 122 24wi Lecture Tunes ❄️

https://open.spotify.com/playlist/2r4INo1zOLu530qgrdFO60?si=32f1a45e7e6540d7&pt=ada3c24cefc4f0024d10675cdfbb3ba8

CSE 122 Winter 2024LEC 06: Stacks & Queues

Lecture Outline

• Announcements

• Review: ADTs, Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 Winter 2024LEC 06: Stacks & Queues

Announcements

• Quizzes
- Feedback released in a couple weeks

- Metacognition: Did it go like you wanted?

• Creative Project 1 is due tomorrow by 11:59pm

• Programming Assignment 1 releasing on Friday
- Due next Thursday, February 1st by 11:59pm

• Resubmission Cycle 1 opens tonight
- Eligible assignments: C0 and P0 (upon P0 feedback being released)

• Friday lecture we’re going to get mid-quarter feedback from you
- Will still be touching on required content, so don’t skip!

• Viewing feedback in Ed…

CSE 122 Winter 2024LEC 06: Stacks & Queues

Lecture Outline

• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 Winter 2024LEC 06: Stacks & Queues

Stacks & Queues

• PCM focused on these new data structures!

• Some collections are constrained, only use optimized (but limited) operations
- Stack: retrieves elements in reverse order as added

- Queue: retrieves elements in same order as added

queue

front back

1 2 3
addremove, peek

stack

top 3

2

bottom 1

pop, peekpush

CSE 122 Winter 2024LEC 06: Stacks & Queues

Abstract Data Types

• Abstract Data Type (ADT): A specification of a collection of data and
the operations that can be performed on it.

- Describes what a collection does, not how it does it (not implementation!)

- Think of it as an idea of a data type

• We don't know exactly how a stack or queue is implemented, and we
don't need to.

- Only need to understand high-level idea of what a collection does

- Stack: retrieves elements in reverse order as added.

- Queue: retrieves elements in same order as added.

CSE 122 Winter 2024LEC 06: Stacks & Queues

Wait, ADT? Interfaces?

• Abstract Data Type (ADT): A description of the idea of a data
structure including what operations are available on it and how those
operations should behave. For example, the English explanation of
what a list should be.

• Interface: Java construct that lets programmers specify what methods
a class should have. For example the List interface in java.

• Implementation: Concrete code that meets the specified interface.
For example, the ArrayList and LinkedList classes that
implement the List interface.

CSE 122 Winter 2024LEC 06: Stacks & Queues

Stacks
• Stack: A collection based on the principle of adding elements and

retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")
- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine the last element added (the "top")

Basic Stack operations:

• push: Add an element to the top

• pop: Remove the top element

• peek: Examine the top element
push

bottom

top

pop

CSE 122 Winter 2024LEC 06: Stacks & Queues

Stacks in Computer Science

• Programming languages and compilers:
- method calls are placed onto a stack (call↔push, return ↔ pop)

- compilers use stacks to evaluate expressions

• Matching up related pairs of things:
- find out whether a string is a palindrome

- examine a file to see if its braces { } match

- convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
- searching through a maze with "backtracking”

- many programs use an "undo stack" of previous operations

CSE 122 Winter 2024LEC 06: Stacks & Queues

Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c");

System.out.println(s.pop());

- Stack has other methods that we will ask you not to use 😬

Stack<E>() constructs a new stack with elements of type E

push(value) places given value on top of stack

pop() removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek() returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size() returns number of elements in stack

isEmpty() returns true if stack has no elements
"a"

"b"

"c"

CSE 122 Winter 2024LEC 06: Stacks & Queues

Queue

• Queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only examine/remove
the front of the queue.

• Basic Queue operations:
- add (enqueue): Add an element to the back.

- remove (dequeue): Remove the front element.

- peek: Examine the front element.

add

remove

front back

CSE 122 Winter 2024LEC 06: Stacks & Queues

Queues in Computer Science

• Operating systems:
- queue of print jobs to send to the printer

- queue of programs / processes to be run

- queue of network data packets to send

• Programming:
- modeling a line of customers or clients

- storing a queue of computations to be performed in order

• Real world examples:
- people on an escalator or waiting in a line

- cars at a gas station (or on an assembly line)

CSE 122 Winter 2024LEC 06: Stacks & Queues

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);

q.add(-3);

q.add(17);

System.out.println(q.remove());

🚨 IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object. (More on that with Interfaces.)

add(value) places given value at back of queue

remove() removes value from front of queue and returns it;
throws a NoSuchElementException if queue is
empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

42-317

CSE 122 Winter 2024LEC 06: Stacks & Queues

Lecture Outline

• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 Winter 2024LEC 06: Stacks & Queues

Lecture Outline

• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 Winter 2024LEC 06: Stacks & Queues

sli.do #cse122Practice : Think

What does this method return?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
numbers.push(number);

}

return total;
}

A) 0
B) 5
C) 15
D) 25
E) Error /

Exception

CSE 122 Winter 2024LEC 06: Stacks & Queues

sli.do #cse122Practice : Pair

What does this method return?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
numbers.push(number);

}

return total;
}

A) 0
B) 5
C) 15
D) 25
E) Error /

Exception

CSE 122 Winter 2024LEC 06: Stacks & Queues

sli.do #cse122Practice : Think

What does this method return?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
q.add(number);

}

return total;
}

A) 0
B) 5
C) 12
D) 15
E) Error /

Exception

CSE 122 Winter 2024LEC 06: Stacks & Queues

sli.do #cse122Practice : Pair

What does this method return?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
q.add(number);

}

return total;
}

A) 0
B) 5
C) 12
D) 15
E) Error /

Exception

CSE 122 Winter 2024LEC 06: Stacks & Queues

Lecture Outline

• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 Winter 2024LEC 06: Stacks & Queues

Problem Solving

• On their own, Stacks & Queues are
quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 Winter 2024LEC 06: Stacks & Queues

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is
easier?

- Just looping over a queue and printing elements

CSE 122 Winter 2024LEC 06: Stacks & Queues

Common Stack & Queue Patterns

• Stack → Queue and Queue → Stack
- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S

• “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times

- Careful: Watch your loop bounds when queue’s size changes

• A “splitting” loop that moves some values to the Stack and others to
the Queue

