W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Talk to your neighbors:
Best place for boba on the Ave? near
campus?

CSE 122
Stacks & Queues Music: 122 24wi Lecture Tunes &3

Miya Natsuhara and Joe Spaniac

Ailsa Chaafen Helena Megana Sahej
Alexander Chloe Jessie Mia Shivani
Ambika Claire Katharine Minh Smrriti
Andy Colin Kavya Nicolas Steven
Arkita Colton Ken Poojitha Vinay
Atharva Connor Kyle Rohini Zane
Autumn Elizabeth Logan Ronald

Raise hand or send here Ayush Hannah Marcus Rucha

slido #csel22

https://open.spotify.com/playlist/2r4INo1zOLu530qgrdFO60?si=32f1a45e7e6540d7&pt=ada3c24cefc4f0024d10675cdfbb3ba8

CSE 122 Winter 2024

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues

Lecture Outline

* Review: ADTs, Stacks & Queues
* Queue Manipulation

e Stack Manipulation

- Problem Solving

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues

Announcements

* Quizzes
- Feedback released in a couple weeks
- Metacognition: Did it go like you wanted?

* Creative Project 1 is due tomorrow by 11:59pm

* Programming Assignment 1 releasing on Friday
- Due next Thursday, February 1t by 11:59pm

* Resubmission Cycle 1 opens tonight
- Eligible assignments: CO and PO (upon PO feedback being released)

* Friday lecture we’re going to get mid-quarter feedback from you
- Will still be touching on required content, so don’t skip!

* Viewing feedback in Ed...

CSE 122 Winter 2024

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Lecture Outline

* Announcements

* Queue Manipulation

e Stack Manipulation

- Problem Solving

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Stacks & Queues

e PCM focused on these new data structures!

* Some collections are constrained, only use optimized (but limited) operations
- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added

push pop, peek
front back
k
top| 3 remove, pee - > 3 add
2
bottom| 1
queue

stack

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Abstract Data Types

* Abstract Data Type (ADT): A specification of a collection of data and
the operations that can be performed on it.
- Describes what a collection does, not how it does it (not implementation!)
- Think of it as an idea of a data type

* We don't know exactly how a stack or queue is implemented, and we
don't need to.

- Only need to understand high-level idea of what a collection does

- Stack: retrieves elements in reverse order as added.
- Queue: retrieves elements in same order as added.

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Wait, ADT? Interfaces?

» Abstract Data Type (ADT): A description of the idea of a data
structure including what operations are available on it and how those
operations should behave. For example, the English explanation of
what a list should be.

* Interface: Java construct that lets programmers specify what methods
a class should have. For example the List interface in java.

* Implementation: Concrete code that meets the specified interface.
For example, the ArrayList and LinkedList classes that
implement the List interface.

CSE 122 Winter 2024

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues

Stacks

* Stack: A collection based on the principle of adding elements and
retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")
- Elements are stored in order of insertion.

- We do not think of them as having indexes.
- Client can only add/remove/examine the last element added (the "top")

: : t
Basic Stack operations: P
* push: Add an element to the top
* pop: Remove the top element
push pop

* peek: Examine the top element

bottom

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Stacks in Computer Science

* Programming languages and compilers:
- method calls are placed onto a stack (callé>push, return €< pop)
- compilers use stacks to evaluate expressions

* Matching up related pairs of things:
- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

* Sophisticated algorithms:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Programming with Stacks

Stack<E> () |constructs a new stack with elements of type E
push (value) | places given value on top of stack
e pop () removes top value from stack and returns it;
throws EmptyStackException if stack is empty
Tt peek () returns top value from stack without removing it;
throws EmptyStackException if stack is empty
g size () returns number of elements in stack
isEmpty () returns true if stack has no elements

Stack<String> s = new Stack<String>();
s.push ("a");
s.push ("b") ;
s.push("c");

System.out.println(s.pop())

- Stack has other methods that we will ask you not to use

LEC 06: Stacks & Queues CSE 122 Winter 2024

W UNIVERSITY of WASHINGTON

Queue

* Queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only examine/remove
the front of the queue.

e Basic Queue operations: emove
- add (enqueue): Add an element to the back.
- remove (dequeue): Remove the front element.

- peek: Examine the front element.

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Queues in Computer Science

* Operating systems:
- queue of print jobs to send to the printer
- gueue of programs / processes to be run
- queue of network data packets to send

* Programming:
- modeling a line of customers or clients
- storing a queue of computations to be performed in order

* Real world examples:
- people on an escalator or waiting in a line
- cars at a gas station (or on an assembly line)

W UNIVERSITY of WASHINGTON

LEC 06: Stacks & Queues CSE 122 Winter 2024

Programming with Queues

add (value)

places given value at back of queue

17

42

Queue<Integer> g

g.add (42) ;
g.add (-3) ;
g.add (17);

System.out.println (g.remove());

remove () removes value from front of queue and returns it;
throws a NoSuchElementException if queue is
empty

peek () returns front value from queue without removing it;
returns null if queue is empty

size () returns number of elements in queue

isEmpty () returns true if queue has no elements

new LinkedList<Integer>()

& IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object. (More on that with Interfaces.)

LEC 06: Stacks & Queues CSE 122 Winter 2024

W UNIVERSITY of WASHINGTON

Lecture Outline

* Announcements

e Review: Stacks & Queues

e Stack Manipulation

- Problem Solving

LEC 06: Stacks & Queues CSE 122 Winter 2024

W UNIVERSITY of WASHINGTON

Lecture Outline

* Announcements
e Review: Stacks & Queues

* Queue Manipulation

- Problem Solving

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

; Practice : Think sli.do #cse122

What does this method return?

// numbers: bottom [1, 2, 3, 4, 5] top A) O
public static int sum(Stack<Integer> numbers) {
int total = ©; B) 5
for (int 1 = @; i < numbers.size(); i++) {

int number = numbers.pop(); C) 15
total += number;
numbers.push(number); D) 25

}
E) Error /
return total;

) Exception

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

;" Practice : Pair dido #cse122

What does this method return?

// numbers: bottom [1, 2, 3, 4, 5] top A) O
public static int sum(Stack<Integer> numbers) {
int total = ©; B) 5
for (int 1 = @; i < numbers.size(); i++) {

int number = numbers.pop(); C) 15
total += number;
numbers.push(number); D) 25

}
E) Error /
return total;

) Exception

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

; Practice : Think sli.do #cse122

What does this method return?

// numbers: bottom [1, 2, 3, 4, 5] top A) O
public static int sum(Stack<Integer> numbers) {
Queue<Integer> q = new LinkedList<>(); B) 5

int total = 0; C) 12

for (int 1 = @; i < numbers.size(); i++) {

int number = numbers.pop(); D) 15
total += number;
q.add(number); E) Error/
} Exception

return total;

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

;" Practice : Pair dido #cse122

What does this method return?

// numbers: bottom [1, 2, 3, 4, 5] top A) O
public static int sum(Stack<Integer> numbers) {
Queue<Integer> q = new LinkedList<>(); B) 5

int total = 0; C) 12

for (int 1 = @; i < numbers.size(); i++) {

int number = numbers.pop(); D) 15
total += number;
q.add(number); E) Error/

} Exception

return total;

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Lecture Outline

* Ahnouncements
e Review: Stacks & Queues
* Queue Manipulation

e Stack Manipulation

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues

Problem Solving

* On their own, Stacks & Queues are
qguite simple with practice
(few methods, simple model)

* Some of the problems we ask are
complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

* We challenge you on purpose here
to practice problem solving

CSE 122 Winter 2024

;

Search for a solution

-
7}
- ¢

.

Evaluate the solution

jump up to previou

y

-

Implement the solution

a
problem I
Reinterpret / Understand the problem

!

@

o Create Sub-Problem

3 4 Search for similar problems we know

o ...or examples/hints from another resource &

p

5 v

E

r

Remember:

' Failure to implement something right

is part of the process!

»

Evaluate the implementation

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Common Problem-Solving Strategies

* Analogy — Is this similar to a problem you’ve seen?
- sum(Stack) is probably a lot like sum(Queue), start there!

* Brainstorming — Consider steps to solve problem before writing code
- Try to do an example “by hand” = outline steps

* Solve Sub-Problems — Is there a smaller part of the problem to solve?
- Move to queue first

* Debugging — Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

* |terative Development — Can we start by solving a different problem that is
easier?
- Just looping over a queue and printing elements

W UNIVERSITY of WASHINGTON LEC 06: Stacks & Queues CSE 122 Winter 2024

Common Stack & Queue Patterns

e Stack > Queue and Queue — Stack

- We give you helper methods for this on problems
* Reverse a Stack with a S->Q + QS

* “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times
- Careful: Watch your loop bounds when queue’s size changes

* A “splitting” loop that moves some values to the Stack and others to
the Queue

