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Announcements

• Programming Assignment 2 (P2) released on Friday!
- Seriously, start early! This assignment is much more involved…

- Due February 15th by 11:59 PM

• Quiz 1 on February 13th

- Topics: ArrayLists, Reference Semantics, Stacks and Queues, Sets, Maps

• Tomorrow, Resubmission Cycle 3 (R3) form out, due February 13th by 
11:59 PM

- Available assignments: P0, C1, P1
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Closing the Feedback Loop
• The Good:

- PCMs, Sections, Resubmissions, Live coding, IPL, TAs

• Suggestions:
- Quiz practice

- Working with TAs to create more “quiz-like” resources

- Spec length / organization
- Working on this! Specs often repeat important info so it’s harder to miss

- Pacing
- Some said too fast, some said too slow…

• Reminders:
- PCMs are expected to take ~20-30min
- Use additional section problems for quiz prep!
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Map ADT

• Data structure to map keys to values
- Keys can be any* type; Keys must be unique 

- Values can be any type 

• Example: Mapping ticker to stock price in P0

• Operations
- put(key, value): Associate key to value

- Overwrites duplicate keys

- get(key): Get value for key

- remove(key): Remove key/value pair

Same as Python’s dict
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mostFrequentStart

Write a method called mostFrequentStart that takes a Set of words 
and does the following steps: 

• Organizes words into “word families” based on which letter they start 
with

• Selects the largest “word family” as defined as the family with the 
most words in it

• Returns the starting letter of the largest word family (and if time, 
should update the Set of words to only have words from the selected 
family). 
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mostFrequentStart
For example, if the Set words stored the values
["hello", "goodbye", "library", "literary", "little", "repel"]

The word families produced would be 
'h' -> 1 word ("hello")

'g' -> 1 word ("goodbye")

'l' -> 3 words ("library", "literary", "little")

'r' -> 1 word ("repel")

Since 'l' has the largest word family, we return 3 and modify the Set to 
only contain Strings starting with 'l'. 
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Nested Collections

• The values inside a Map can be any 
type, including data structures

• Common examples:
- Mapping: Section ➔ Set of students in 

that section

- Mapping: Recipe ➔ Set of ingredients in 
that recipe

- Or even Map<String, Map<String, Double>> 
for units!
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Updating Nested Collections

The “value” inside the Map is a reference
to the data structure! 

- Think carefully about number of references
to a particular object

courses.put("CSE 123", new HashSet<String>());

courses.get("CSE 123").add("Kasey");

Set<String> cse123 = courses.get("CSE 123");

cse123.add("Brett");
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sli.do #cse122Practice : Think

Suppose map had the following items. What 
would its items be after running this code?
map: {”KeyA"=[1, 2], ”KeyB"=[3], ”KeyC"=[4, 5, 6]}

Set<Integer> nums = map.get("KeyA");

nums.add(7);

map.put("KeyB", nums);

map.get("KeyA").add(8);

map.get("KeyB").add(9);

A.{"KeyA"=[1, 2],          "KeyB"=[1, 2, 7],       "KeyC"=[4, 5, 6]}

B.{"KeyA"=[1, 2, 8],       "KeyB"=[1, 2, 7, 9],    "KeyC"=[4, 5, 6]}

C.{"KeyA"=[1, 2, 7, 8],    "KeyB"=[1, 2, 7, 9],    "KeyC"=[4, 5, 6]}

D.{"KeyA"=[1, 2, 7, 8, 9], "KeyB"=[1, 2, 7, 8, 9], "KeyC"=[4, 5, 6]}
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sli.do #cse122Practice : Pair

Suppose map had the following items. What 
would its items be after running this code?
map: {”KeyA"=[1, 2], ”KeyB"=[3], ”KeyC"=[4, 5, 6]}

Set<Integer> nums = map.get("KeyA");

nums.add(7);

map.put("KeyB", nums);

map.get("KeyA").add(8);

map.get("KeyB").add(9);

A.{"KeyA"=[1, 2],          "KeyB"=[1, 2, 7],       "KeyC"=[4, 5, 6]}

B.{"KeyA"=[1, 2, 8],       "KeyB"=[1, 2, 7, 9],    "KeyC"=[4, 5, 6]}

C.{"KeyA"=[1, 2, 7, 8],    "KeyB"=[1, 2, 7, 9],    "KeyC"=[4, 5, 6]}

D.{"KeyA"=[1, 2, 7, 8, 9], "KeyB"=[1, 2, 7, 8, 9], "KeyC"=[4, 5, 6]}

A:

B:

C:

[1, 2]

[3]

[4, 5, 6]

[1, 2, 7]

nums

[1, 2, 7, 8][1, 2, 7, 8, 9]
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Background: Search Engines
• A search engine receives a query and returns a set of relevant 

documents. Examples: Google.com, Mac Finder, more.
- Queries often can have more 

• A search engine involves two main components
- An index to efficiently find the set of documents for a query

- Will focus on “single word queries” for today’s example

- A ranking algorithm to order the documents from most to least relevant
- Not the focus of this example

• Goal: Precompute a data structure that helps find the relevant 
documents for a given query
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Inverted Index

• An inverted index is a Mapping from possible query words to the set 
of documents that contain that word

- Answers the question:
“What documents contain
the word ‘corgis’?”
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Ranking Results
• There is no one right way to define which documents are “most relevant” 

There are approximations, but make decisions about what relevance 
means

• Idea 1: Documents that have more hits of the query should come first
- Pro: Simple

- Con: Favors longer documents (query: “the dogs” will favor long documents with lots 
of “the”s)

• Idea 2: Weight query terms based on their “uniqueness”. Often use some 
sort of score for “Term Frequency – Inverse Document Frequency (TF-IDF)

- Pro: Doesn’t put much weight on common words like “the”

- Cons: Complex, many choices in how to compute that yield pretty different rankings

• Idea 3: Much more! Most companies keep their ranking algorithms very 
very secret ☺

https://en.wikipedia.org/wiki/Tf%E2%80%93idf
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Data Bias
• Image results for searching the term “CEO” on Google (2015)

- Notice anything about the results?

https://www.washington.edu/news/2015/04/09/whos-a-ceo-google-image-results-can-shift-gender-biases/

https://www.washington.edu/news/2015/04/09/whos-a-ceo-google-image-results-can-shift-gender-biases/
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Data Bias

https://www.washington.edu/news/2022/02/16/googles-ceo-image-search-gender-bias-hasnt-really-been-fixed

• Fix: Image results for searching “CEO” and “CEO United States” (2022)

https://www.washington.edu/news/2022/02/16/googles-ceo-image-search-gender-bias-hasnt-really-been-fixed/#:~:text=The%20researchers%20showed%20that%20for,AAAI%20Conference%20of%20Artificial%20Intelligence
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Data Bias
• Google’s autocomplete 

recommendations used to actually look 
like this

- Fix: Don’t display autocomplete results for 
phrases like “why are [group] ____”

Are these changes fixing the 
right thing?

Btw, Miya says this is a great book that you should check
out if you’re interested ->


