
CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Agenda

• Announcements

• Closing the Feedback Loop

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Announcements

• Programming Assignment 2 (P2) released on Friday!
- Seriously, start early! This assignment is much more involved…

- Due February 15th by 11:59 PM

• Quiz 1 on February 13th

- Topics: ArrayLists, Reference Semantics, Stacks and Queues, Sets, Maps

• Tomorrow, Resubmission Cycle 3 (R3) form out, due February 13th by
11:59 PM

- Available assignments: P0, C1, P1

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Agenda

• Announcements

• Closing the Feedback Loop

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Closing the Feedback Loop
• The Good:

- PCMs, Sections, Resubmissions, Live coding, IPL, TAs

• Suggestions:
- Quiz practice

- Working with TAs to create more “quiz-like” resources

- Spec length / organization
- Working on this! Specs often repeat important info so it’s harder to miss

- Pacing
- Some said too fast, some said too slow…

• Reminders:
- PCMs are expected to take ~20-30min
- Use additional section problems for quiz prep!

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Agenda

• Announcements

• Closing the Feedback Loop

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Map ADT

• Data structure to map keys to values
- Keys can be any* type; Keys must be unique

- Values can be any type

• Example: Mapping ticker to stock price in P0

• Operations
- put(key, value): Associate key to value

- Overwrites duplicate keys

- get(key): Get value for key

- remove(key): Remove key/value pair

Same as Python’s dict

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

mostFrequentStart

Write a method called mostFrequentStart that takes a Set of words
and does the following steps:

• Organizes words into “word families” based on which letter they start
with

• Selects the largest “word family” as defined as the family with the
most words in it

• Returns the starting letter of the largest word family (and if time,
should update the Set of words to only have words from the selected
family).

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

mostFrequentStart
For example, if the Set words stored the values
["hello", "goodbye", "library", "literary", "little", "repel"]

The word families produced would be
'h' -> 1 word ("hello")

'g' -> 1 word ("goodbye")

'l' -> 3 words ("library", "literary", "little")

'r' -> 1 word ("repel")

Since 'l' has the largest word family, we return 3 and modify the Set to
only contain Strings starting with 'l'.

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Agenda

• Announcements

• Closing the Feedback Loop

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Nested Collections

• The values inside a Map can be any
type, including data structures

• Common examples:
- Mapping: Section ➔ Set of students in

that section

- Mapping: Recipe ➔ Set of ingredients in
that recipe

- Or even Map<String, Map<String, Double>>
for units!

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Updating Nested Collections

The “value” inside the Map is a reference
to the data structure!

- Think carefully about number of references
to a particular object

courses.put("CSE 123", new HashSet<String>());

courses.get("CSE 123").add("Kasey");

Set<String> cse123 = courses.get("CSE 123");

cse123.add("Brett");

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

sli.do #cse122Practice : Think

Suppose map had the following items. What
would its items be after running this code?
map: {”KeyA"=[1, 2], ”KeyB"=[3], ”KeyC"=[4, 5, 6]}

Set<Integer> nums = map.get("KeyA");

nums.add(7);

map.put("KeyB", nums);

map.get("KeyA").add(8);

map.get("KeyB").add(9);

A.{"KeyA"=[1, 2], "KeyB"=[1, 2, 7], "KeyC"=[4, 5, 6]}

B.{"KeyA"=[1, 2, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}

C.{"KeyA"=[1, 2, 7, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}

D.{"KeyA"=[1, 2, 7, 8, 9], "KeyB"=[1, 2, 7, 8, 9], "KeyC"=[4, 5, 6]}

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

sli.do #cse122Practice : Pair

Suppose map had the following items. What
would its items be after running this code?
map: {”KeyA"=[1, 2], ”KeyB"=[3], ”KeyC"=[4, 5, 6]}

Set<Integer> nums = map.get("KeyA");

nums.add(7);

map.put("KeyB", nums);

map.get("KeyA").add(8);

map.get("KeyB").add(9);

A.{"KeyA"=[1, 2], "KeyB"=[1, 2, 7], "KeyC"=[4, 5, 6]}

B.{"KeyA"=[1, 2, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}

C.{"KeyA"=[1, 2, 7, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}

D.{"KeyA"=[1, 2, 7, 8, 9], "KeyB"=[1, 2, 7, 8, 9], "KeyC"=[4, 5, 6]}

A:

B:

C:

[1, 2]

[3]

[4, 5, 6]

[1, 2, 7]

nums

[1, 2, 7, 8][1, 2, 7, 8, 9]

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Agenda

• Announcements

• Closing the Feedback Loop

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Background: Search Engines
• A search engine receives a query and returns a set of relevant

documents. Examples: Google.com, Mac Finder, more.
- Queries often can have more

• A search engine involves two main components
- An index to efficiently find the set of documents for a query

- Will focus on “single word queries” for today’s example

- A ranking algorithm to order the documents from most to least relevant
- Not the focus of this example

• Goal: Precompute a data structure that helps find the relevant
documents for a given query

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Inverted Index

• An inverted index is a Mapping from possible query words to the set
of documents that contain that word

- Answers the question:
“What documents contain
the word ‘corgis’?”

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Ranking Results
• There is no one right way to define which documents are “most relevant”

There are approximations, but make decisions about what relevance
means

• Idea 1: Documents that have more hits of the query should come first
- Pro: Simple

- Con: Favors longer documents (query: “the dogs” will favor long documents with lots
of “the”s)

• Idea 2: Weight query terms based on their “uniqueness”. Often use some
sort of score for “Term Frequency – Inverse Document Frequency (TF-IDF)

- Pro: Doesn’t put much weight on common words like “the”

- Cons: Complex, many choices in how to compute that yield pretty different rankings

• Idea 3: Much more! Most companies keep their ranking algorithms very
very secret ☺

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Data Bias
• Image results for searching the term “CEO” on Google (2015)

- Notice anything about the results?

https://www.washington.edu/news/2015/04/09/whos-a-ceo-google-image-results-can-shift-gender-biases/

https://www.washington.edu/news/2015/04/09/whos-a-ceo-google-image-results-can-shift-gender-biases/

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Data Bias

https://www.washington.edu/news/2022/02/16/googles-ceo-image-search-gender-bias-hasnt-really-been-fixed

• Fix: Image results for searching “CEO” and “CEO United States” (2022)

https://www.washington.edu/news/2022/02/16/googles-ceo-image-search-gender-bias-hasnt-really-been-fixed/#:~:text=The%20researchers%20showed%20that%20for,AAAI%20Conference%20of%20Artificial%20Intelligence

CSE 122 Winter 2024LEC 10: Nested Collections sli.do #cse122

Data Bias
• Google’s autocomplete

recommendations used to actually look
like this

- Fix: Don’t display autocomplete results for
phrases like “why are [group] ____”

Are these changes fixing the
right thing?

Btw, Miya says this is a great book that you should check
out if you’re interested ->

