CSE 122 Practice Final Exam Solutions
Summer 2023

Name of Student:

Section (e.g., AA): Student Number (eg., 1234567):

The exam is divided into six questions with the following points:

Problem Area

1 Conceptual

2 Code Tracing

3 Debugging

4 Collections Programming

5 Objects Programming

6 Stacks/Queues Programming

Do not begin work on this exam until instructed to do so. Any student who starts early or
who continues to work after time is called will receive U’s on some problems as a penalty.

You are allowed one page of a reference sheet, front and back, as notes during the exam.
Space is provided for your answers. There is also a reference sheet at the end that you
should use. You are not allowed to access any other papers during the exam. You are NOT to
use any electronic devices while taking the test, including calculators. Anyone caught using
an electronic device will receive U’s on some problems as a penalty.

The exam is not, in general, graded on code quality and you do not need to include comments.
For the stack/queue and collections questions, however, you are expected to use generics
properly and to declare variables using interfaces when possible. You may only use the
methods on the cheat sheet for the data structures listed. For objects programming, you
should declare all fields to be private. Problems may specify more specific requirements.
You are not allowed to use programming constructs we haven’t discussed in class such as
break, continue, or returns from a void method on this exam.

Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

You are allowed to ask for scratch paper to use as additional space when writing answers,
but you must indicate on the original page for the problem that part of the solution is on
scratch paper. Failure to do so may result in your work on scratch paper not being graded.

If you finish the exam early, please hand your exam to the instructor and exit quietly
through the front door. During the last 5 minutes of the exam, please stay in your seats to
avoid disrupting others during the end of the exam.

FEach problem is graded on an E/S/N scale. In general, to earn an E on a problem your
solution must work without error and meet all the problem requirements. To earn an S, there
is allowance for minor errors in the solution, but the problem requirements must still be
met to earn an S. Unless specified by the problem, we do not grade on code quality.

Initial here to indicate you have read and agreed to these rules:

1. Conceptual: Each of these parts uses the Hospital.java implementation included here.

public class Hospital {
private String name;
private int numDoctors;
private int maxPatients;

public Hospital (String name, int numDoctors, int maxPatients) ({
this.name = name;
this.numDoctors = numDoctors;
this.maxPatients = maxPatients;

}

public Hospital (String name) {
this (name, 0, 0);

}

public void expand (int newNumDocs, int newMaxPatients) {
this.numDoctors = newNumDocs;
this.maxPatients = newMaxPatients;

}

public double patientDoctorRatio() {
if (this.numDoctors == 0) {
return 0;

}

return (double) maxPatients / numDoctors;

}

public String getName () {
return this.name;

}

public int getNumDoctors () {
return this.numDoctors;

}

public int getMaxPatients () {
return this.maxPatients;

}

public String toString() {
return this.name + " {Num Doc: " + this.numDoctors + ", Max Pat: " +
this.maxPatients + "}";

Part A: Consider the following code snippet.
Hospital hl = new Hospital (“Seattle Childrens”, 200, 1200);
Hospital h2 = new Hospital (“Overlake”);
System.out.println (hl);

Hospital h3 = hl;
h3.expand (300, 1800);
h3 = h2;

h2 = hl;

h3.expand (500, 1500);
System.out.println (h2);
System.out.println (h3);

Part Al: How many Point objects are created in this snippet? Answer in box below

2 Objects

Part A2: How many references to objects are created in this snippet?
Answer in box below

3 reference

i
n

Part B: What is printed to the console by the code snippet from Part A?

Seattle Childrens {WNum Doc: 200, Max Pat: 1200}
Seattle Childrens {Hum Doc: 300, Max Pat: 1800}
COverlake {WNum Doc: 500, Max Pat: 1500)

Part C: (Select one option) Suppose we were to write the following method. Which of the
options below would make the best summary for this new method of our Hospital.java class?

public Hospital mystery(List<Hospital> list) {
double a = 0.0;
Hospital b;
for (Hospital h : list) {
double ¢ = h.patientDoctorRatio();
if (c >= a) {
a = c;
b = h;

}

return b;
}
<:> Updates each Hospital in the list to have a higher Patient-Doctor Ratio
<:> Checks and returns the Hospital that is tied for the same Patient-Doctor Ratio
<:> Calculates the Hospital in the list that has the highest Patient-Doctor Ratio

(:) Calculates the Hospital in the list that has the lowest Patient-Doctor Ratio

2. Code Tracing: Consider the method below.

public static List<Integer> mystery(int[][] data) {
List<Integer> result = new ArrayList<>();
for (int i = 1; 1 < data.length; i++) {
for (int j = datal[i].length - 1; 3 > 0; j--) {
result.add (data[i]l [jJ] - 1);
}
}

return result;

For each 2d array below, indicate in the right-hand column what values would be stored in
the list returned by method mystery if the array in the left-hand column is passed as a
parameter to mystery. List elements should be listed in proper order as a comma-separated
bracketed list, as in [3, 18, 25].

Input 2D Array Contents of List Returned

g — = W
~
N
~
w
~
iy
~

3. Debugging: Consider the following buggy implementation of rotateLeftAndNegateEvens. The
intended behavior of this method is to take a list of integers and integer steps and modify
that list so that the numbers are rotated left by the specified number of steps.
Additionally, after the rotation, if the number is even and it moves from the front to the
back, then it should be negated.

For example, if a variable called list stores this sequence of values and int steps = 2:

We want to rotate the numbers within this list to the left by two steps. Additionally, we
want to negate the even numbers that move from the front to the back. If the method gets is
passed a negative value for steps or if the list is empty, then the method should throw an
IllegalArgumentException (). So, our expected output is:

Notice that 2 became -2 because it moved from the front to the back.

A TA wrote a buggy implementation of this method shown below. HINT: There are 2 bugs.

1. public static void rotatelLeftAndNegateEvens (List<Integer> list, int steps) {
2. if (steps < 0 || list.length() == 0) {

3. throw new IllegalArgumentException();
4, }

5. for (int i = 0; 1 < steps; i++) {

6. int valFirst = list.remove (i) ;

7. if (valFirst % 2 == 0) {

8. list.add(valFirst * -1);

9. } else {

10. list.add(valFirst);

11. }

12. }

13. }

Your task is to fix this implementation so that it behaves as described above. If you are
making significant changes to the structure of the method, it may be helpful to write your
whole solution from scratch. However, if you are only making minor edits to the code that
you can clearly explain, you can also write out just the edits below. If writing edits,
specifically mention which line(s) you will change and write out the code you would replace
them with. You will need to write correct code on the lines you change/add. If you are
deleting some code, make sure it’s clear what parts are being removed. If you are inserting
new code, make sure it is unambiguous where this new code belongs. Mention specific line
number (s) .

There are two bugs. Firstly, ArrayLists don't have a method
.length (). They have a method .size () instead (Line 2).
Secondly, on Line &, we don’'t want to remove at index i,
instead always from the start (index = 0).

4. Collections Programming: Write a method called studentsTaught that takes a map
indicating each student’s enrollment history and an instructor’s name and returns a set
indicating all students that the given instructor has taught.

The input map will have keys that are names of students (strings) and corresponding values
which are maps representing the classes the student has taken. The value map maps the course
code (integers) to the name of the instructor (strings) they took the class with. For
example, if a variable called m stored the following map in the format described

above:

{Colton={163=Kevin},

Darel={416=Hunter, 373=Kevin, 143=Kevin},
Ben={373=Kevin, 143=Stuart},
Atharva={121=Miya, 122=Hunter, 123=Brett}}

Then a call to studentsTaught (m, "Kevin") should return a Set with the following elements:
[Ben, Colton, Darel]
A call to studentsTaught(m, "Elba") should return an empty Set, since none of the students

in m took a course with her.

Notice that some instructors teach multiple courses and the same course may be taught by
different instructors (in different quarters, for example).

The set you return should be sorted alphabetically. You may assume that the given map and
none of its contents are null.

Your method should construct the new set to return but should otherwise not construct any

other new data structures. Your method should not modify the given Map. You should use
interface types and generics appropriately.

Write your solution on the next page

public static Set<String> studentsTaught |
Map<String, Map<Integer,
String instructor) |
Set<String> names = new TreeSet<>(};
for (3tring student :
Map<Integer, String> courses =

for (int course : courses.keySet()) |
String instr = courses.get(course);
if {instr.equals{instructer)) {

names.add (student) ;

}

refturn names;

String=»> studentToCourse,

studentToCourse. keySet ()] |
studentToCourse.get (student) ;

5. Objects Programming: Consider the following interface Restaurant. For this problem, you
are to write a class called FastFoodRestaurant, which implements the Restaurant. The
FastFoodRestaurant class should have two constructors. The first constructor should take a
String name and the associated cuisine would be “N/A”. The second constructor should take
two parameters (String name and String cuisine).

public interface Restaurant {
// Returns the name of the Restaurant
public String getName () ;

// Returns the cuisine of the Restaurant (For example: Thai or Indian)
public String getCuisine();

// Returns a list of items on the menu
public List<String> getMenu() ;

// Adds a food item to the menu. If the food item is already present, then there is no
// change.
public void addFoodItem(String foodName) ;

// Removes a food item from the menu.
// Throws an IllegalArgumentException if the food item does not exist.
public void removeFoodItem(String foodName) ;

// Returns the number of food items on the menu
public int getNumFoodItems () ;

// Makes a reservation at the particular restaurant. If a restaurant doesn’t take

// reservations (ex. Fast Food restaurants), then it returns “No reservation needed!”.
// If a restaurant accepts reservations, it returns “Success” or “Failure”.

public String makeReservation (String time);

// Returns true if this restaurant has more items than the other restaurant
// otherwise false
public boolean hasMoreOptions (Restaurant other);

For example, if the following lines were executed using the FastFoodRestaurant class...
Restaurant rl = new FastFoodRestaurant (“McDonalds”);
rl.addFoodItem (“"Butter Paneer”);
rl.addFoodItem(“Cheeseburger”) ;
rl.removeFoodItem (“Butter Paneer”);

Restaurant r2 = new FastFoodRestaurant (“Chipotle”, “Mexican”);
r2.addFoodItem (“Tacos”) ;

r2.addFoodItem (“PadThai”) ;

r2.addFoodItem (“Burrito”) ;

r2.addFoodItem (“"Burrito”) ;

r2.removeFoodItem (“"PadThai”) ;

\

Then, the following methods would return...

rl.getName () // McDonalds

rl.getCuisine () // N/A

rl.getMenu () // [Cheeseburger]

rl.getNumFoodItems () // 1

r2.getName () // Chipotle

r2.getCuisine () // Mexican

r2.getMenu () // [Tacos, Burrito] -> order does not matter
r2.getNumFoodItems () // 2

rl.hasMoreOptions (r2) // false

rl.makeReservation(“8:00 pm”) // No reservation needed!

Your FastFoodRestaurant class should implement the Restaurant Interface. Your
FastFoodRestaurant class should have private fields and should implement the above-outlined
public methods. Write your solution on the next page.

Solution:
import java.util.*;

public class FastFoodRestaurant implements Restaurant {
private String name;
private String cuisine;
private Set<String> menu;

public FastFoodRestaurant (String name, String cuisine) {
this.name = name;
this.cuisine = cuisine;
this.menu = new HashSet<>();

public FastFoodRestaurant (String name) {
this (name, "N/A");
}

public String getName () {
return this.name;

}

public String getCuisine () {
return this.cuisine;

}

public List<String> getMenu () {
return new ArrayList<>(this.menu);

}

public void addFoodItem(String foodName) {
this.menu.add (foodName) ;

}

public void removeFoodItem(String foodName) {
if (!this.menu.contains (foodName)) {
throw new IllegalArgumentException();
}
this.menu.remove (foodName) ;

}

public int getNumFoodItems () {
return this.menu.size();

}

public boolean hasMoreOptions (Restaurant other) {
if (this.getNumFoodItems () > other.getNumFoodItems()) {
return true;

}

return false;

public String makeReservation (String time) {
return "No reservation needed!";

}

6. Stacks/Queues Programming: Write a method called mirrorSplit that takes a stack of
integers as a parameter and that splits each value into two halves, adding new values to the
stack in a mirror position. For example, suppose that a stack s stores the following values:

bottom [14, 20, 8, 12] top
and we make the following call:
mirrorSplit (s);
Then s should store the following values after the call:

bottom [7, 10, 4, 6, 6, 4, 10, 7] top

mirror positions

The first value 14 has been split in half into two 7s which appear in mirror positions
(first and last). The second value 20 has been split in half into two 10s which appear in
mirror positions (second and second-to-last). And so on. This example included just even
numbers in which case you get a true mirror image. If the stack contains odd numbers, they
should be split so as to add up to the original with the larger value appearing closer to
the bottom of the stack. For example, if the stack stores these values:

bottom [13, 5, 12] top
After the call, it would store the following values:
bottom [7, 3, 6, 6, 2, 6] top

The first value 13 has been split into 7 and 6 with the 7 included as the first value and 6
included as the last value. The value 5 has been split into 3 and 2 with 3 appearing as the
second value and 2 appearing as the second-to-last value. And so on.

For an E, your solution must obey the following restrictions. A solution that disobeys them
may get an S, but it is not guaranteed.

* You may use one queue as auxiliary storage. You may not use other structures
(arrays, lists, etc.), but you can have as many simple variables as you like.

* Use the Queue interface and Stack/LinkedList classes discussed in class.

* Use stacks/queues in stack/queue-like ways only. Do not use index-based methods
such as get, search, or set, or for-each loops or iterators. You may call add,
remove, push, pop, peek, isEmpty, and size.

* Do not use advanced material such as recursion to solve the problem.

You have access to the following two methods and may call them as needed to help you solve
the problem:

public static void s2g(Stack<Integer> s, Queue<Integer> q) {
while (!s.isEmpty()) {
g.add(s.pop()) ;

}

public static void g2s(Queue<Integer> g, Stack<Integer> s) {
while (!qg.isEmpty()) {
s.push (g.remove ()) ;

You should write your solution in the box on the next page. If you need additional space,
please indicate that your solution is continued on scratch paper.

public static void mirrorSplit(Stack<Integer> s) {
Queue<Integer> g = new LinkedList<>{();

s2gq(s, q);

int oldSize = g.sizel();

for (int 1 = 0; i < oldSize; i++) |
int n = g.remove();

g.add(n / 2);
s.push(n / 2 + n % 2);

1

s2q(s, q);

for (int 1 = 0; 1 < eoldSize; i++) {
g.add(g.remove ()) ;

}

gZ2s (g, s);:

(You may use the rest of this page as scratch paper if necessary)

A A CSE 122 Final Exam Reference Sheet * 2

(DO NOT WRITE ANY WORK YOU WANTED GRADED ON THIS REFERENCE SHEET. IT WILL NOT BE GRADED)

Examples of Constructing Various Collections

List<Integer> list = new ArrayList<Integer>();

Queue<Double> queue = new LinkedList<Double> () ;

Stack<String> stack = new Stack<>(); // Diamond operator also permitted
Set<String> words = new HashSet<>();

Map<String, Integer> counts = new TreeMap<String, Integer>();

Methods Found in ALL collections (Lists, Stacks, Queues, Sets, Maps)

equals (collection)

Returns t rue if the given other collection contains the same elements

isEmpty () Returns true if the collection has no elements
size () Returns the number of elements in a collection
toString () Returns a string representation suchas " [10, -2, 43]"

Methods Found in both Lists and Sets (ArrayList, LinkedList, HashSet, TreeSet)

add (value)

Adds value to collection (appends at end of list)

addall (collection)

Adds all the values in the given collection to this one

contains (value)

Returns true if the given value is found somewhere in this collection

iterator ()

Returns an Iterator object to traverse the collection's elements

clear ()

Removes all elements of the collection

remove (value)

Finds and removes the given value from this collection

removeAll (collection)

Removes any elements found in the given collection from this one

retainAll (collection)

Removes any elements not found in the given collection from this one

List<Type> Methods

add (index, value)

Inserts given value at given index, shifting subsequent values right

indexOf (value)

Returns first index where given value is found in list (-1 if not found)

get (index)

Returns the value at given index

lastIndexOf (value)

Returns last index where given value is found in list (-1 if not found)

remove (index)

Removes/returns value at given index, shifting subsequent values left

set (index, value)

Replaces value at given index with given value

Stack<Type> Methods (only allowed methods plus size and isEmpty)

pop () Removes the top value from the stack and returns it;
pop throw an EmptyStackException if the stack is empty
push (value) Places the given value on top of the stack
peek () Returns the value at the top from the stack without removing it;
throws a EmptyStackException if the stack is empty
Queue<Type> Methods (only allowed methods plus size and isEmpty)
add (value) Places the given value at the back of the queue
remove () Removes the value from the front of the queue and returns it;
throws a NoSuchElementException if the queue is empty
peek () Returns the value at the front of the queue without removing it;
throws a NoSuchElementException if the queue is empty

Map<KeyType, ValueType> Methods

containsKey(key)

true if the map contains a mapping for the given key

get (key)

The value mapped to the given key (null if none)

keySet ()

Returns a Set of all keys in the map

put (key, value)

Adds a mapping from the given key to the given value

putAll (Map)

Adds all key/value pairs from the given map to this map

remove(kEY)

Removes any existing mapping for the given key

toString () Returns a string such as "{a=90, d=60, c=70}"
values () Returns a Collection ofall values in the map
Iterator<Type> Methods
hasNext () | Returns true if there is another element in the iterator
next () Returns the next value in the iterator and progresses the iterator forward one element
remove () | Removes the previous value returned by the next. Can only call once after each call to next ()
string Methods
charAt (i) The character in this String at a given index

contains (str)

true if this String contains the other's characters inside it

endsWith (str)

true if this String ends with the other's characters

equals (str)

true if this String is the same as str

equalsIgnoreCase (Str)

true if this String is the same as str, ignoring capitalization

indexOf (str)

First index in this String where given String begins (-1 if not found)

lastIndexOf (str)

Last index in this String where given String begins (-1 if not found)

length ()

Number of characters in this String

isEmpty ()

true if this String is the empty string

startsWith (str)

true if this String begins with the other's characters

substring (i, j) Characters in this String from index i (inclusive) to j (exclusive)
substring (i) Characters in this String from index i (inclusive) to the end
toLowerCase (), toUpperCase () | A new String with all lowercase or uppercase letters

Math Methods
abs (x) Returns the absolute value of x

Returns the larger of x and y

(
max(x, y)
(

min(x, y)

Returns the smaller of x and y

pow (x, ¥) Returns the value of x to the y power
random () Returns a random number between 0.0 and 1.0
round (x)

Returns x rounded to the nearest integer

public class Example implements InterfaceExample {

private type field;

public Example () {
field = something;

}

public void method() {
// do something

}

Object/Interface Syntax

public interface InterfaceExample {
public void method() ;
}

