
CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

CSE 122
LEC 07

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructors:

TAs:

Ido Avnon

Abby Williams
Chloë Mi Cartier
Connor Sun
Cynthia Pan
Katharine Zhang
Marcus Sanches
Rohini Arangam

Stacks & Queues Practice

Talk to your neighbors:
If you were an herb/seasoning, what

would you be?

BEFORE WE START

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Announcements

•Creative Project 1 was due yesterday, how’d it go?

•Programming Assignment 1 releasing later tonight
- Focusing on Stacks and Queues

•Resubmission Cycle 1 form posted
- Due July 16 by 11:59pm

- Eligible assignments: P0

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Stacks & Queues

• Some collections are constrained, only use optimized operations
- Stack: retrieves elements in reverse order as added

- Queue: retrieves elements in same order as added

queue

front back

1 2 3
addremove

stack

top 3

2

bottom 1

poppush

👀
peek

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Common Stack & Queue Patterns

• Reverse a Stack with a S→Q + Q→S

• “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times

- Careful: Watch your loop bounds when queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to
the Queue

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

copyStack

Write a method copyStack that takes a stack of integers as a
parameter and returns a copy of the original stack (i.e., a new stack
with the same values as the original, stored in the same order as the
original).

You may use one queue as auxiliary storage.

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Ido’s First Try

public static Stack<Integer> copyStack(Stack<Integer> s) {

return s;

}

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

• Sometimes we want to limit someone’s input into our method to
“valid” options we define

- Previously printed out “hey don’t do that” messages which isn’t great…

• Allow us to “fail fast” and immediately halt execution

• No longer need to wrap code in conditionals

• Can include custom error messages about what went wrong

if (/* invalid input */) {
throw new IllegalArgumentException("Error Message");

}

Exceptions

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

spliceStack

Write a method called spliceStack that takes as parameters a stack
of integers s, a start position i, and an ending position j, and that
removes a sequence of elements from s starting at the i’th element
from the bottom of the stack up to (but not including) the j’th element
from the bottom of the stack (where position 0 is the bottom of the
stack), returning these values in a new stack. The ordering of elements
in both stacks should be preserved.

stack

top

8 4

1 3

3 2

4 1

bottom 1 0

spliceStack(s, 1, 3)

s

top

3

bottom 4

New stack returned by
method

top

8 2

1 1

bottom 1 0

s

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Fundamental Data Structures ➔ Problem Solving

• On their own, Stacks & Queues are
quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that
is easier?

- Just looping over a queue and printing elements

CSE 122 Summer 2024LEC 06: Stacks & Queues Practice

Metacognition
• Metacognition: asking questions about your solution process.

• Examples:
- While debugging: explain to yourself why you’re making this change to your

program.
- Before running your program: make an explicit prediction of what you expect to

see.
- When coding: be aware when you’re not making progress, so you can take a break

or try a different strategy.
- When designing:

- Explain the tradeoffs with using a different data structure or algorithm.
- If one or more requirements change, how would the solution change as a result?
- Reflect on how you ruled out alternative ideas along the way to a solution.

- When studying: what is the relationship of this topic to other ideas in the course?

