
CSE 122 Summer 2024 LEC 13: Collections

CSE 122
LEC 13

Questions during Class?

Raise hand or send here

sli.do #cse122

Ido AvnonInstructor

TAs Abby Williams
Chloë Mi Cartier
Connor Sun
Cynthia Pan
Katharine Zhang
Marcus Sanches
Rohini Arangam

Collections

Talk to your neighbors:

BEFORE WE START

What plans do you have for after this
course ends?

CSE 122 Summer 2024 LEC 13: Collections

Lecture Outline

• Announcements

• Optional

• Collections

• Importance of Testing/Bugs

• JUnit

• Example

CSE 122 Summer 2024 LEC 13: Collections

Announcements

• Programming Assignment 3 (P3) due tomorrow!
- Due August 8th by 11:59 PM

• Quiz 2 TOMORROW in section!

• Reminder on Final Exam
- Part 1: In section August 15th

- Part 2: in lecture August 16th

CSE 122 Summer 2024 LEC 13: Collections

Final Exam Part 2 (Friday August 16th)

• Slightly longer quiz (60 minutes, 4 questions)

• In lecture (this classroom PCCAR 192)
- Please come 5-10 minutes early

- Bring: pencil, ID card, notes

• Unlimited paper notes

• Paper exam, no electronics

• Resources: out Friday

CSE 122 Summer 2024 LEC 13: Collections

Final Exam Part 1

• NOT A PAPER EXAM!

• A one-on-one presentation of your culminating project with your TA
in section!

- Run-through of your code

- Reflection on your code and process

• Worth two ESN grades (given by the TA you present to)

• More info and resources: Friday!

CSE 122 Summer 2024 LEC 13: Collections

Lecture Outline

• Announcements

• Optional

• Collections

• Importance of Testing/Bugs

• JUnit

• Example

CSE 122 Summer 2024 LEC 13: Collections

Optional

Optional is a Java class that is used to handle
situations where a value is sometimes there.
- A variable that can sometimes be initialized

- Optional<String> keepPlaying = Optional.empty();

- Optional<Integer> maxValue = Optional.of(-1);

Like a collection, Optional uses <> to denote the type it
contains..
- e.g., Optional<String>, Optional<Integer>, Optional<Point>

CSE 122 Summer 2024 LEC 13: Collections

Optional Methods

The Optional class has more than just these methods, but
these are what you’ll need to focus on for this class!

Method Description
Optional.empty() Creates an empty Optional object

Optional.of(…)
Creates an Optional object holding the object it’s
given

isEmpty()
Returns true if there is no value stored, and false
otherwise

isPresent()
Returns true if there is a value stored, and false
otherwise

get()
Returns the stored object from the Optional (if one is
stored; otherwise throws a
NoSuchElementException)

CSE 122 Summer 2024 LEC 13: Collections

Optional Methods

isEmpty(), isPresent(), and get() are called like
normal instance methods (on an actual instance of
Optional).

Optional.of(…) and Optional.empty() are called
differently

(Like the Math class methods)

CSE 122 Summer 2024 LEC 13: Collections

Why Optional?

Using Optional can help programmers avoid
NullPointerExceptions by making it explicit when
a variable may or may not contain a value.
• Remember – null refers to the absence of an object!

There are other Optional methods (that you should
explore in your own time if you’re interested) that can
be really useful to cleanly work with data that may or
may not be present.

CSE 122 Summer 2024 LEC 13: Collections

Lecture Outline

• Announcements

• Optional

• Collections

• Importance of Testing/Bugs

• JUnit

• Example

CSE 122 Summer 2024 LEC 13: Collections

Collections: What classes have we seen so far?

…

Array,
ArrayList,
Linked List,
Stack,
HashSet & HashMap,
TreeSet & TreeMap

CSE 122 Summer 2024 LEC 13: Collections

Collections: What interfaces have we seen so far?

…

Set,
Queue,
List,
Comparable

CSE 122 Summer 2024 LEC 13: Collections

Java Collection

• An extremely general interface that every data structure we have
talked about indirectly implements

• Methods in the interface
- add

- remove

- contains

- isEmpty

- size

- And more…

• Map’s values() method returns a Collection !!!

CSE 122 Summer 2024 LEC 13: Collections

CSE 122 Summer 2024 LEC 13: Collections

Lecture Outline

• Announcements

• Optional

• Collections

• Importance of Testing/Bugs

• JUnit

• Example

CSE 122 Summer 2024 LEC 13: Collections

Importance of Testing

Software, written by people,
controls more and more of our day-
to-day lives.

Bugs (just like the ones we all write)
are just as easy to write in this
software.

Stakes can be quite high so bugs
can have catastrophic effects

The Horizon IT System for The UK Post Office
Source: Fujitsu.com

Source: Hackaday

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Please download and install the

Slido app on all computers you use

🍎 A - What bugs have you

experienced?

ⓘ Start presenting to display the poll results on this slide.

CSE 122 Summer 2024 LEC 13: Collections

Lecture Outline

• Announcements

• Optional

• Collections

• Importance of Testing/Bugs

• JUnit

• Example

CSE 122 Summer 2024 LEC 13: Collections

Using a Testing Framework

• Unit Test – a method that compares what your codes does
against what you expect it to do

• Testing Framework – a library of code that gives you special
tags and key words for your unit tests so that you can click the
“test” button instead of the “run” button and you get a list of tests
with info like green check mark passes or error messages

Like a music tuner! Technology specifically built to

compare what your instrument sounds like against what

it’s expected to sound like

CSE 122 Summer 2024 LEC 13: Collections

JUnit Basics

• JUnit – a unit testing framework for the Java language
- import statements to give you access to JUnit method annotations and

assertion methods!

• Method Annotations
- @Test
- @DisplayName
- …

• Assertion Methods
- assertEquals
- assertTrue
- assertFalse
- …

CSE 122 Summer 2024 LEC 13: Collections

JUnit Testing
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;
import java.util.*;

public class ArrayListTest {
@Test
public void testAddAndGet() {

List<String> list = new ArrayList<>();
list.add(“Ido Avnon");
list.add(“And his amazing TAs");
list.add("CSE 122");

assertEquals(“Ido Avnon", list.get(0));
}

}

CSE 122 Summer 2024 LEC 13: Collections

JUnit Testing
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;
import java.util.*;

public class ArrayListTest {
@Test
public void testAddAndGet() {

List<String> list = new ArrayList<>();
list.add(“Ido Avnon");
list.add(“And his amazing TAs");
list.add("CSE 122");

assertEquals(“Ido Avnon", list.get(0)); //TRUE
}

}

CSE 122 Summer 2024 LEC 13: Collections

JUnit Testing
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;
import java.util.*;

public class ArrayListTest {
@Test
public void testAddAndGet() {

List<String> list = new ArrayList<>();
list.add(“Ido Avnon");
list.add(“And his amazing TAs");
list.add("CSE 122");

assertEquals(“Ido Avnon", list.get(0));
assertEquals(“And his amazing TAs", list.get(2));

}
}

CSE 122 Summer 2024 LEC 13: Collections

JUnit Testing
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;
import java.util.*;

public class ArrayListTest {
@Test
public void testAddAndGet() {

List<String> list = new ArrayList<>();
list.add(“Ido Avnon");
list.add(“And his amazing TAs");
list.add("CSE 122");

assertEquals(“Ido Avnon", list.get(0));
assertEquals(“And his amazing TAs", list.get(2)); //FALSE

}
}

CSE 122 Summer 2024 LEC 13: Collections

Testing Tips

• Write many tests for each method
- Test that your method does what you want it to do
- Test combinations of your method being used with other methods

• Write a test method per distinct case
- Test that different states of input don’t break your code (empty or null params)
- Test that code correctly enters all boolean checks (loops, if/else)

• Use assertEquals(expected, actual, message) to
provide a description of what case that line is testing

• Testing code is just code. Use good coding practices (e.g.,
helper methods to reduce redundancy) to help you write code.

- It can take time, but if you do it well, developing your solution can be
a breeze!

CSE 122 Summer 2024 LEC 13: Collections

How Many Test Cases Is Enough?

• In general, more diverse tests –> more confidence!
• Try to think adversarially and try to break your own

code with tests, How do you “user-proof” your
code?

• Specification Testing (based on the spec) vs. Clear-
box Testing (based on how you know your
implementation works)

- Specification Testing you can do before writing your
solution! (Test Driven Development)

- Clear-box Testing you do after you've written your
solution.

• Test a wide variety of different cases
- Think about boundary or "edge" cases in particular,

where the behavior should change

CSE 122 Summer 2024 LEC 13: Collections

Lecture Outline

• Announcements

• Optional

• Collections

• Importance of Testing/Bugs

• JUnit

• Example

CSE 122 Summer 2024 LEC 13: Collections

Card Class

• Each card has a suit (♠️♣️♦️❤️)
and a value (e.g., 2, 3, 10, J, Q, K)

- Note: value represented as an int

- For example, for the Queen of Hearts
card

- The suit is hearts ❤️
- The value is Queen (represented as 12)

Ace 2 3 4 5 6 7 8 9 10 Jack Quee

n

King

1 2 3 4 5 6 7 8 9 10 11 12 13

CSE 122 Summer 2024 LEC 13: Collections

Card Class

• public Card(int value, String
suit)

- Throws an IllegalArgumentException if
value or suit is invalid

• public String getSuit()

• public int getValue()

• public String toString()

• public boolean equals(Object
other)

CSE 122 Summer 2024 LEC 13: Collections

BattleManager Class

• Assumes two players

• Setup: 52-card deck is split between the two players
evenly

• Each round:
- Each player flips their top card
- The player with the higher value card takes both cards

- Aces are considered "high" – they beat all other values

- If the cards have the same value, "battle"
- Each player places 3 cards face down, then flips a new card,

and the player with the higher value card takes all cards
- (If this is another battle, repeat previous process)

• Goal: one player has all 52 cards

CSE 122 Summer 2024 LEC 13: Collections

BattleManager Class

• public BattleManager()

• public BattleManager(Queue<Card> deck1,
Queue<Card> deck2)

• public void deal()

• public boolean gameOver()

• public int getPlayer1DeckSize()

• public int getPlayer2DeckSize()

• public void play()

Please download and install the

Slido app on all computers you use

What test cases can you

think of for the Card class?

ⓘ Start presenting to display the poll results on this slide.

Please download and install the

Slido app on all computers you use

What test cases can you

think of for the

BattleManager class?

ⓘ Start presenting to display the poll results on this slide.

CSE 122 Summer 2024 LEC 13: Collections

Challenge: Floating Point Numbers

• Another name for doubles are floating point numbers

• Floating point numbers are nice, but imprecise
- Computers can only store a certain amount of precision (can’t store 0.3333333333

repeating forever)
- Finite precision can lead to slightly incorrect calculations with floating point

numbers

• Take-away: Essentially can never rely on == for doubles. Instead, must
define some notion of how far away they can be to be tolerated as the
same

- JUnit: assertEquals(expected, actual, delta)

