
CSE 122 Summer 2024LEC 12: OOP

CSE 122
L E C 1 2

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructors:

TAs:

Ido Avnon

Advanced OOP

Talk to your neighbors:

What are your plans over the summer?

BEFORE WE START

Abby Williams
Chloë Mi Cartier
Connor Sun
Cynthia Pan
Katharine Zhang
Marcus Sanches
Rohini Arangam

CSE 122 Summer 2024LEC 12: OOP

Lecture Outline

• Announcements

• Constructors Recap

• Equals

• Bigger Example

• Interfaces Review

• Shapes!

• Comparable

CSE 122 Summer 2024LEC 12: OOP

Announcements

•Programming Assignment 3 (P3) releasing later tonight
- Focused on OOP and interfaces!

•Quiz 2 (LAST ONE) in section Thursday 8/8

• Finals week coming up! Prep materials coming next week

CSE 122 Summer 2024LEC 12: OOP

Lecture Outline

• Announcements

• Equals

• Bigger Example

• Interfaces Review

• Shapes!

• Comparable

CSE 122 Summer 2024LEC 12: OOP

Equals (PCM Review)

The equals() method returns true if the given parameter
is considered equal to this object, and false otherwise.

Used by lots of library methods! e.g. contains, remove for
specific elements, etc.

Each class has one provided by Java, but it checks for
reference equality. (Thanks?)

If you want equals to check for value equality, you need to
write this method yourself.

CSE 122 Summer 2024LEC 12: OOP

Equals (PCM Review)

CSE 122 Summer 2024LEC 12: OOP

Object

By taking a parameter of type Object, the equals
method can be passed any type of object.

More to come in CSE 123 on the Java mechanisms that
make this work!

We can use the instanceof keyword in Java to
determine if the parameter is actually a Point

CSE 122 Summer 2024LEC 12: OOP

Almost there…

This is actually still an imperfect
implementation because we would also need
to write a hashCode() method for our object

to work with HashSet, HashMap, etc. but
more to come on that in CSE 331 and beyond

☺

CSE 122 Summer 2024LEC 12: OOP

Lecture Outline

• Announcements

• Equals

• Bigger Example

• Interfaces Review

• Shapes!

• Comparable

CSE 122 Summer 2024LEC 12: OOP

Student class
Write a Student class that you can construct by saying:

new Student(1234567, "Miya")

where the first parameter is their student number and the second parameter is their name. Your
Student class should also implement the following methods:

• getName() returns the student's name

• getStudentNumber() returns the student's number

• setName(String newName) sets the student’s name to the given newname

• toString() returns a String representation of the student formatted as "name
(studentNumber)"

• equals(Object other) that returns true if the given parameter is considered equal to this
object

CSE 122 Summer 2024LEC 12: OOP

Student class

What if we added a field to the Student class:

private boolean isMale;

Yikes—You are the designer now. Think carefully about

what assumptions you are making!

Also…

Why shouldn’t we include a setStudentNumber method?

CSE 122 Summer 2024LEC 12: OOP

Course class
Write a Course class that represents a course at UW. Implement the following methods
and constructors:

Constructors

• Write a constructor so that you can construct a Course by saying new
Course(23213, "CSE 122", 4) where the first parameter is the course's SLN,
the second parameter is the code for the course, and the third parameter is the
number of credits.

• Write another constructor so that you can construct a Course by saying new
Course(23239, "CSE 122", 4, enrollment) where the first parameter is the
course's SLN, the second parameter is the code for the course, the third parameter is
the number of credits, and the fourth parameter is a Student[] containing a
Student for each student enrolled in the course.

CSE 122 Summer 2024LEC 12: OOP

Course class
Instance Methods

• updateRoster(Student[] students) replaces the current roster with the content of the

given students

• addStudent(Student s) adds the given student to the roster if they are not already on it

• dropStudent(Student s) removes the given student from the roster if they are on it

• checkStudentEnrolled(Student s) returns true if the given student is on the current

roster, and false otherwise

• getSLN() returns the course's SLN

• getCourseCode() returns the course's code

• getCredits() returns the number of credits for the course

• getRoster() returns a copy of the course's roster

CSE 122 Summer 2024LEC 12: OOP

Lecture Outline

• Announcements

• Equals

• Bigger Example

• Interfaces Review

• Shapes!

• Comparable

CSE 122 Summer 2024LEC 12: OOP

Recall from L6: Wait, ADT? Interfaces?

• Abstract Data Type (ADT): A description of the idea of a data
structure including what operations are available on it and how those
operations should behave. For example, the English explanation of
what a list should be.

• Interface: Java construct that lets programmers specify what methods
a class should have. For example the List interface in java.

• Implementation: Concrete code that meets the specified interface.
For example, the ArrayList and LinkedList classes that
implement the List interface.

CSE 122 Summer 2024LEC 12: OOP

Interfaces

Interfaces serve as a sort of “certificate”– in order for a
class to implement an interface, it must fulfill the
certificates requirements.

The certificates requirements are certain methods that
the class must implement.

CSE 122 Summer 2024LEC 12: OOP

Lists

One ADT we’ve talked a lot about in this course is a list.

Within Java, there exists a List interface – its contract
includes methods like:

add, clear, contains, get, isEmpty, size

There’s also an ArrayList class (implementation)

To get the certificate, it must include all these

methods (and any others the List interface specifies)

CSE 122 Summer 2024LEC 12: OOP

Interfaces vs. Implementation

Interfaces require certain methods, but they do not say
anything about how those methods should be
implemented – that’s up to the class! 🏅

List is an interface
ArrayList is a class that implements the List interface
LinkedList is a class that implements the List interface
…

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/ArrayList.java
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/LinkedList.html
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/LinkedList.java

CSE 122 Summer 2024LEC 12: OOP

Why interfaces?

Flexibility

public static void method(Set<String> s) {…}

This method can accept either a:

• HashSet<String> or

• TreeSet<String> or

• Any other class that implements Set and whose element type is
String!

CSE 122 Summer 2024LEC 12: OOP

Why interfaces?

Abstraction

Interfaces also support abstraction
(the separation of ideas from details)

CSE 122 Summer 2024LEC 12: OOP

Lecture Outline
• Announcements

• Equals

• Bigger Example

• Interfaces Review

• Shapes!

• Comparable

CSE 122 Summer 2024LEC 12: OOP

Classes can Implement Multiple Interfaces

A class can implement multiple interfaces – it’s like one
person getting multiple certificates!

If a class implements an interface A and an interface B,
it’ll just have to include all of A’s required methods
along with all of B’s required methods

CSE 122 Summer 2024LEC 12: OOP

Classes can Implement Multiple Interfaces
public interface Parallel {

public int numParallelPairs();

}

public class Square implements Shape, Parallel {

...

public int numParallelPairs() {

return 2;

}

}

But Square would have to implement:

-getPerimeter, getArea from Shape

AND

-numParallelPairs from Parallel

CSE 122 Summer 2024LEC 12: OOP

An interface can extend another

You can have one interface extend another

So if public interface A extends B, then any

class that implements A must include all the methods in

A’s interface and all the methods in B’s interface

CSE 122 Summer 2024LEC 12: OOP

An interface can extend another

We can write another interface

Polygon that extends Shape

Make modifications such that:

- Square is a Polygon (and Shape)

-Triangle is a Polygon (and Shape)

-Circle is a Shape (but not a Polygon)

CSE 122 Summer 2024LEC 12: OOP

Lecture Outline

• Announcements

• Equals

• Bigger Example

• Interfaces Review

• More Shapes!

• Comparable

CSE 122 Summer 2024LEC 12: OOP

Comparable

TreeSet uses an interface called Comparable<E> to know
how to sort its elements!

Only has one required method:
public int compareTo(E other)

Its return value is:

< 0 if this is “less than” other

0 if this is equal to other

> 0 if this is “greater than” other

