BEFORE WE START

Talk to your neighbors:
Introduce yourself to your neighbor!

What is your go to coffee/tea shop order? Enter your answer in the slido!

Music: CSE 122 Summer 2024 🎵

Instructors: Ido Avnon
TAs: Abby Williams
Chloë Mi Cartier
Connor Sun
Cynthia Pan
Katharine Zhang
Marcus Sanches
Rohini Arangam

Questions during Class?
Raise hand or send here
sli.do #cse122
Lecture Outline

• Introductions/Announcements

• About this Course
 - Course Components & Tools
 - Policies
 - Making the Most of this Class

• Intro/Review Java

• Functional Decomposition
Course Staff

• Instructors: Miya Natsuhara and Kasey Champion

• Teaching Assistants: 7 Amazing TAs
 - Available in section, office hours, and discussion board
 - Invaluable source of information & help in this course

• We’re excited to get to know you!
 - Our goal is to help you succeed 😊
Announcements

• Hope you had fun in your first quiz section yesterday!
• Culminating Project 0 (C0) released, due next Thursday June 27th
 - Proposal for your project (no code)
• IPL and OH will also begin on Monday!
 - OH: Tuesday and Thursday, 2-3 or schedule a 1-on-1
• Introductory Survey
• Any questions from yester
Lecture Outline

• Introductions/Announcements

• **About this Course**
 - Course Components & Tools
 - Policies
 - Making the Most of this Class

• Intro/Review Java

• Functional Decomposition
Prerequisite Knowledge

• Students entering CSE 122 are coming from many of different backgrounds
 - UW: CSE 121 or other intro programming course
 - Community College: Intro Programming Course
 - High School Programming Course (e.g., UWHS, AP CS, IB CS, etc.)
 - Self-taught or other previous experience

• Importantly: CSE 122 is in Java, but we do not expect prior experience in Java! Do expect knowing the list of CSE 121 topics in some language.
 - Students who do not have experience in Java will be focusing on practicing the programming skills you know in a new language!
 - You will find the Java Tutorial and Java Review Lesson useful!
 - If you want to know if this class is the right fit for you, take the Allen School Self-Placement Test
What is this Class?

CSE 121 – Computer Programming I
or Other Programming Experience

- Print statements
- Data types (int, String, boolean)
- Methods / Functions
 - Parameters
 - Returns
- Control structures
 - Loops
 - Conditionals
- Arrays & 2D arrays

CSE 122 – Computer Programming II

- Decomposing large problems into smaller, manageable, subproblems
- File I/O
- Using data structures
 - List
 - Stacks / Queues
 - Sets
 - Maps
- Object Oriented Programming
 - Interfaces
Course Components

Meetings

LECTURES
- We’re here!
- Introduce concepts, practice ideas, discuss applications.
- Pre-class materials to prepare for class each day. Due **before** class.
- Recorded 😊

SECTIONS
- Held in person
- More practice, reviews, applications
- TA advice, how to be an effective student
- Preparation for quizzes / exams
- Not Recorded!

Assessments

PROGRAMMING ASSIGNMENTS (x4)
- Structured assignments
- Programming in Java
- Applying & implementing course concepts

CULMINATING PROJECT (x4)
- Student designed
- Single project split up into four checkpoints

QUIZZES (x3)
- Taken in quiz section
- 50 minutes on computer

EXAM (x1)
- Culminating exam
- **Friday, August 16, 10:50-11:50**
Course Website

Contains most course info – check frequently!
Announcements, Calendar, Lecture Slides, Office Hours schedule, Staff Bios, Important Links

Please familiarize yourself with the course syllabus this week!
Other Course Tools

Ed
- Community & Information
 - Discussion Board
 (please ask & answer!; anonymous option)
 - Chat
 - Announcements
- Pre-Class Materials / Section Handouts
- Assignments
 - Online IDE
 - Submit assignments
 - View Feedback

My Digital Hand
- Queueing in office hours

VSCode (Optional)
- Develop offline
- Visual debugger

Canvas
- Lecture recordings

Sli.do
- In-class activities
 (ungraded)
- No account needed
Lecture Outline

• Introductions/Announcements

• **About this Course**
 - Course Components & Tools
 - Policies
 - Making the Most of this Class

• Intro/Review Java

• Functional Decomposition
Collaboration

• These concepts are challenging—we strongly encourage discussion + collaboration!
 - Don’t attempt to gain credit for something you didn’t do
 - In general, share ideas and work together, but don’t copy work. Never show someone else your code or solution write up.
 - For any ungraded work (e.g., pre-class materials) there is no concern about academic misconduct! You should be collaborating on those without reservation.
 - On graded assignments you should still collaborate, but the code you write should be of your own creation.
 - Always cite the help you receive on graded work

• Withdrawal Policy
• Generative AI Policy
• Read full policy in Syllabus
Textbook

Pre-class Materials

- All required readings are available free on Ed!
- Should be finished before class (not graded)

Optional Textbook

- Building Java Programs by Reges and Stepp (5th Edition)
- Not required but does add another perspective. Will reference relevant chapters.
- Advice: only purchase if you learn best with a textbook, otherwise not recommended.
Lecture Outline

• Introductions/Announcements
• **About this Course**
 - Course Components & Tools
 - Policies
 - Making the Most of this Class

• Intro/Review Java
• Functional Decomposition
How do you learn best?
Getting Help

• Discussion Board
 - Feel free to make a public or private post on Ed
 - We encourage you to answer other peoples’ questions! A great way to learn

• Introductory Programming Lab (Office Hours)
 - TAs can help you face to face in office hours, and look at your code
 - You can go to the IPL with any course questions, not just assignments

• Section
 - Work through related problems, get to know your TA who is here to support you

• Your Peers
 - We encourage you to form study groups! Discord or Ed are great places to do that

• Email
 - We prefer that all content and logistic questions go on the Ed discussion board (even if you make them private). 310 of you >>> 31 of us!
 - For serious personal circumstances, you can email Miya and Kasey directly. It never hurts to email us, but if it’s a common logistic question, we may politely ask you to post on the discussion board instead.
Lecture Outline

• Introductions
• About this Course
 - Course Components & Tools
 - Policies
 - Making the Most of this Class
• Intro/Review Java
• Functional Decomposition
Hello World

• Java Specifics
 - Every program needs a **class**
 - Runnable programs need a **main** method (*signature* must exactly match)
 - `System.out.println` to print
 - "Hello world" is a **String**

```java
public class HelloDemo {
    public static void main(String[] args) {
        System.out.println("Hello world");
    }
}
```
What is the output of this Java program?

```java
public class Demo {
    public static void main(String[] args) {
        int[] nums = {1, 4, 4, 8, 13};

        int totalDiff = 0;
        for (int i = 1; i <= nums.length; i++) {
            totalDiff += (nums[i] - nums[i - 1]);
        }
        System.out.println("Total Diff = " + totalDiff);
    }
}
```

A) Total Diff = 12
B) Total Diff = 10
C) Total Diff = 9
D) Exception!
What is the output of this Java program?

```java
public class Demo {
    public static void main(String[] args) {
        int[] nums = {1, 4, 4, 8, 13};

        int totalDiff = 0;
        for (int i = 1; i <= nums.length; i++) {
            totalDiff += (nums[i] - nums[i - 1]);
        }
        System.out.println("Total Diff = " + totalDiff);
    }
}
```

A) Total Diff = 12
B) Total Diff = 10
C) Total Diff = 9
D) Exception!
Class Example: Horoscope Guesser

A Short Program that:
• Introduces itself to the reader
• Asks the user for input
• Uses that input to display a result

• Running on Ed
 - Run runs your program
 - Mark submits and runs autograder
 - Submit as many times as you like
 - Solution shows solution (if applicable)
Functional Decomposition

Functional decomposition is the process of breaking down a complex problem or system into parts that are easier to conceive, understand, program, and maintain.

“Bake the cookies”

- Mix butter and sugar
- Beat in eggs & vanilla
- Mix in flour, baking soda, and chocolate chips
- Make cookie-sized balls of dough
- Place evenly on baking sheet
- Bake at 350° F for 10 minutes
- Let cool
TODOs for this Weekend 😊

- Think about your proposal for C0
 - This project spans the whole quarter, so think about something you would like to work on!
- PCM before lecture on Wednesday (website and Ed)!
- Attend section on Tuesday 😊