
CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

CSE 122
LEC 07

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructors:

TAs:

Miya Natsuhara and Kasey Champion and

Ayush
Poojitha
Chloe
Ailsa
Jasmine
Lucas
Logan

Kyle
Jacob
Atharva
Rucha
Megana
Eesha
Zane

Colin
Ronald
Saivi
Shivani
Kavya
Steven
Ken

Chaafen
Smriti
Ambika
Elizabeth
Aishah
Minh
Katharine

Stacks & Queues Practice

Talk to your neighbors:
If you were an herb/seasoning, what

would you be?

BEFORE WE START

Music: 122 24sp Lecture Tunes 🌼

https://open.spotify.com/playlist/6SkaFIxiZNf5uqRLVC4oM2?si=71abbe9bed2a4b70

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Announcements

•Creative Project 1 was due yesterday, how’d it go?

•Programming Assignment 1 releasing later tonight
- Focusing on Stacks and Queues

•Resubmission Cycle 1 form posted
- Due April 23 by 11:59pm

- Eligible assignments: C0, P0

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Stacks & Queues

• Some collections are constrained, only use optimized operations
- Stack: retrieves elements in reverse order as added

- Queue: retrieves elements in same order as added

queue

front back

1 2 3
addremove

stack

top 3

2

bottom 1

poppush

👀
peek

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Fundamental Data Structures ➔ Problem Solving

• On their own, Stacks & Queues are
quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that
is easier?

- Just looping over a queue and printing elements

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Metacognition
• Metacognition: asking questions about your solution process.

• Examples:
- While debugging: explain to yourself why you’re making this change to your

program.
- Before running your program: make an explicit prediction of what you expect to

see.
- When coding: be aware when you’re not making progress, so you can take a break

or try a different strategy.
- When designing:

- Explain the tradeoffs with using a different data structure or algorithm.
- If one or more requirements change, how would the solution change as a result?
- Reflect on how you ruled out alternative ideas along the way to a solution.

- When studying: what is the relationship of this topic to other ideas in the course?

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Common Stack & Queue Patterns

• Stack → Queue and Queue → Stack
- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S

• “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times

- Careful: Watch your loop bounds when queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to
the Queue

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

copyStack
Write a method copyStack that takes a stack of integers as a
parameter and returns a copy of the original stack (i.e., a new stack
with the same values as the original, stored in the same order as the
original).

Your method should create the new stack and fill it up with the same
values that are stored in the original stack. It is not acceptable to
return the same stack passed to the method; you must create, fill, and
return a new stack.

You may alter the stack parameter throughout your method, but by
the end, it must have the same elements in the same order.

You may use one queue as auxiliary storage.

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

copyStack

s2 qs s2s

1

2

3

1

2

3

1

2

3

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

• Sometimes we want to limit someone’s input into our method to
“valid” options we define

- Previously printed out “hey don’t do that” messages which isn’t great…

• Allow us to “fail fast” and immediately halt execution

• No longer need to wrap code in conditionals

• Can include custom error messages about what went wrong

if (/* invalid input */) {
throw new IllegalArgumentException("Error Message");

}

Exceptions

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

Lecture Outline

• Announcements

• Quick Recap

• copyStack Review

• Exceptions

• Structured Example: spliceStack

CSE 122 Spring 2024LEC 07: Stacks & Queues Practice

spliceStack

Write a method called spliceStack that takes as parameters a stack
of integers s, a start position i, and an ending position j, and that
removes a sequence of elements from s starting at the i’th element
from the bottom of the stack up to (but not including) the j’th element
from the bottom of the stack (where position 0 is the bottom of the
stack), returning these values in a new stack. The ordering of elements
in both stacks should be preserved.

stack

top

8 4

1 3

3 2

4 1

bottom 1 0

spliceStack(s, 1, 3)

s

top

3

bottom 4

New stack returned by
method

top

8 2

1 1

bottom 1 0

s

