
CSE 122 LEC 08: Maps

CSE 122
LEC 08

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructor

TAs

Melissa Lin
Poojitha Arangam
Darel Gunawan
Colton Harris
Atharva Kashyap
Eesha Kunisetty

Audrey Lin
Di Mao
Steven Nguyen
Ben Wang
Jaylyn Zhang

Maps

Talk to your neighbors:

What’s your favorite movie genre?

BEFORE WE START

CSE 122 LEC 08: Maps

Lecture Outline
• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 LEC 08: Maps

Announcements
•Quiz 0 grades were released

- Regrade Request form

• C1 due tomorrow
• P2 released Friday
•Quiz 1 is Monday, July 24
- Topics: Reference Semantics, 2D Arrays, Sets, Maps, Nested Collections

https://docs.google.com/forms/d/e/1FAIpQLSeAuis4PmjYLjSqtVeYxa3r9wq1EyA76vjhjs9XMkaaIX3PZg/viewform

CSE 122 LEC 08: Maps

Lecture Outline
• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 LEC 08: Maps

(PCM) Map - What is it good for?

What is it?
● Keeps associations between unique keys and (non-unique) values
● All keys are one type. All values are one type

○ But a keys might be a different type from values
● Dynamically sized

What is Map particularly good at?
● put(key, value) - associates key with a value
● get(key) - returns the value associated with a key (if any)
● remove(key) – remove key/value pair

CSE 122 LEC 08: Maps

(PCM) Abstract Data Types
more

abstract

more
specific

ADT

Interface

Implementation

Examples: queue, stack, list,

Examples: Queue<>, List<>

Examples: ArrayList,
LinkedList, array,
Stack, 2D array,

Language specific

Language agnostic

set, map (aka dictionary)

Set<>, Map<>

HashSet, TreeSet,
HashMap, TreeMap

CSE 122 LEC 08: Maps

(PCM) Maps in Java
• Interface: Map
• Implementations: TreeMap, HashMap

- TreeMap – Pretty fast, sorted keys
- HashMap – Extremely fast, unsorted keys

Map<String, Integer> map1 = new TreeMap<>();
Map<String, Integer> map2 = new HashMap<>();
...

CSE 122 LEC 08: Maps

(PCM) Programming with Maps
Methods Description

put(key, value) adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

CSE 122 LEC 08: Maps

(PCM) Programming with Maps

// Making a Map
Map<String, String> musicalToFavSong = new TreeMap<>();

// adding elements to the above Map
musicalToFavSong.put(”Hamilton", ”Wait for It");
musicalToFavSong.put(”Les Miserables", ”Stars");
musicalToFavSong.put(”Waitress", ”She Used to Be Mine");

// Getting a value for a key
String song = musicalToFavSong.get(”Hamilton");
System.out.println(song); // “Wait for It”

CSE 122 LEC 08: Maps

sli.do #cse122Practice : Think
What does the map store after the following code?

Map<String, String> musicalToFavSong = new TreeMap<>();

musicalToFavSong.put("Hamilton", "Non-Stop");
musicalToFavSong.put("Hamilton", "Wait for It");
musicalToFavSong.put("Les Miserables", "Stars");
musicalToFavSong.put("Waitress", "She Used to Be Mine");
musicalToFavSong.remove(”Les Miserables");
musicalToFavSong.put(”Hairspray", ”Without Love");

Hamilton -> Non-Stop
Hamilton -> Wait for It
Waitress -> She Used to Be Mine
Hairspray -> Without Love

Waitress -> She Used to Be Mine
Hamilton -> Wait for It
Hairspray -> Without Love

Hairspray -> Without Love
Hamilton -> Wait for It
Waitress -> She Used to Be Mine

A B C

D
Error

CSE 122 LEC 08: Maps

sli.do #cse122Practice : Pair
What does the map store after the following code?

Map<String, String> musicalToFavSong = new TreeMap<>();

musicalToFavSong.put("Hamilton", "Non-Stop");
musicalToFavSong.put("Hamilton", "Wait for It");
musicalToFavSong.put("Les Miserables", "Stars");
musicalToFavSong.put("Waitress", "She Used to Be Mine");
musicalToFavSong.remove(”Les Miserables");
musicalToFavSong.put(”Hairspray", ”Without Love");

Hamilton -> Non-Stop
Hamilton -> Wait for It
Waitress -> She Used to Be Mine
Hairspray -> Without Love

Waitress -> She Used to Be Mine
Hamilton -> Wait for It
Hairspray -> Without Love

Hairspray -> Without Love
Hamilton -> Wait for It
Waitress -> She Used to Be Mine

A B C

Error

CSE 122 LEC 08: Maps

Lecture Outline
• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 LEC 08: Maps

Lecture Outline
• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 LEC 08: Maps

joinRosters
Write a method joinRosters that combines a Map from student name to quiz
section, and a Map from TA name to quiz section and prints all pairs of
students/TAs.

For example, if studentSections stores the following map:
{Alan=AD, Jerry=AB, Nina=AA, Sharon=AB, Tanya=AD}

And taSections stores the following map
{Jaylyn=AB, Darel=AD, Atharva=AA}

AD: Alan - Darel
AB: Jerry - Jaylyn
AA: Nina - Atharva
AB: Sharon - Jaylyn
AD: Tanya - Darel

CSE 122 LEC 08: Maps

Lecture Outline
• Announcements

• Map Review

• Debrief PCM: Count Words

• Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 LEC 08: Maps

mostFrequentStart
Write a method called mostFrequentStart that takes a Set of words
and does the following steps:
• Organizes words into “word families” based on which letter they start

with
• Selects the largest “word family” as defined as the family with the

most words in it
• Returns the starting letter of the largest word family (and if time,

should update the Set of words to only have words from the selected
family).

CSE 122 LEC 08: Maps

mostFrequentStart
For example, if the Set words stored the values
["hello", "goodbye", "library", "literary", "little", "repel"]

The word families produced would be
'h' -> 1 word ("hello")
'g' -> 1 word ("goodbye")
'l' -> 3 words ("library", "literary", "little")
'r' -> 1 word ("repel")

Since 'l' has the largest word family, we return 3 and modify the Set to
only contain Strings starting with 'l'.

