
CSE 122 LEC 04: Stacks & Queues

CSE 122
LEC 04

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructor

TAs

Melissa Lin
Poojitha Arangam
Darel Gunawan
Colton Harris
Atharva Kashyap
Eesha Kunisetty

Audrey Lin
Di Mao
Steven Nguyen
Ben Wang
Jaylyn Zhang

Talk to your neighbors:

Dogs or cats?

BEFORE WE START

Stacks & Queues

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review: ADTs, Stacks & Queues

• Queue Manipulation

• Stack Manipulation

• Problem Solving

CSE 122 LEC 04: Stacks & Queues

Announcements
• Quiz 0 next Monday (July 10th)
• Resub 0 (R0) due tonight

- P0 grades will be released today, so you technically can resubmit
• Creative Project (C0) due tomorrow
• Programming Assignment 1 (P1) will be released Friday

- It will be due next Thursday (July 13)

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review

• Queue Manipulation

• Stack Manipulation

• Problem Solving

CSE 122 LEC 04: Stacks & Queues

(PCM) Abstract Data Types
• Abstract Data Type (ADT): A specification of a collection of data and

the operations that can be performed on it.
- Describes what a collection does, not how it does it

• We don't know exactly how a stack or queue is implemented, and we
don't need to!

- Only need to understand high-level idea of what a collection does and its
operations in order to use them

- Stack: retrieves elements in reverse order as added.
Operations: push, pop, peek, …

- Queue: retrieves elements in same order as added.
Operations: add, remove, peek, …

CSE 122 LEC 04: Stacks & Queues

(PCM) Abstract Data Types
more

abstract

more
specific

ADT

Interface

Implementation

Examples: queue, stack, list

Examples: Queue<>, List<>

Examples: ArrayList,
LinkedList, array,
Stack

Language specific

Language agnostic

CSE 122 LEC 04: Stacks & Queues

Stack - What is it good for?

What is it?
● A Last-in-First-out (LIFO) data structure

○ Elements are removed in the reverse order to how they were added
● All elements must be of same type*
● Dynamically sized

What is Stack particularly good at?
● push - add element to top
● pop - remove element from top
● Supported operations are few but very efficient

stack

top 3
2

bottom 1

pop, peekpush

CSE 122 LEC 04: Stacks & Queues

(PCM) Stacks

push

bottom

top

pop

CSE 122 LEC 04: Stacks & Queues

Stacks in Computer Science
• Programming languages and compilers:

- method calls are placed onto a stack (call=push, return=pop)
- compilers use stacks to evaluate expressions

• Matching up related pairs of things:
- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations

CSE 122 LEC 04: Stacks & Queues

(PCM) Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c"); // bottom ["a", "b", "c"] top
System.out.println(s.pop()); // "c"

- Stack has other methods that we will ask you not to use

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

CSE 122 LEC 04: Stacks & Queues

Queue - What is it good for?

What is it?
● A First-in-First-out (FIFO) data structure

○ Elements are removed in the same order to how they were added
● All elements must be of same type*
● Dynamically sized

What is Queue particularly good at?
● add - add element to back
● remove - remove element from front
● Supported operations are few but very efficient

queue

front back
1 2 3

addremove, peek

CSE 122 LEC 04: Stacks & Queues

(PCM) Queue

add

remove

front back

CSE 122 LEC 04: Stacks & Queues

Queues in Computer Science
• Operating systems:

- queue of print jobs to send to the printer
- queue of programs / processes to be run
- queue of network data packets to send

• Programming:
- modeling a line of customers or clients
- storing a queue of computations to be performed in order

• Real world examples:
- people on an escalator or waiting in a line
- cars at a gas station (or on an assembly line)

CSE 122 LEC 04: Stacks & Queues

(PCM) Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

- IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review

• Queue Manipulation

• Stack Manipulation

• Problem Solving

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review

• Queue Manipulation

• Stack Manipulation

• Problem Solving

CSE 122 LEC 04: Stacks & Queues

sli.do #cse122Practice : Think

What is the return of this method?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
numbers.push(number);

}

return total;
}

A) 0
B) 1
C) 5
D)15
E) 25
F) Throws an error

CSE 122 LEC 04: Stacks & Queues

sli.do #cse122Practice : Pair

What is the return of this method?
A) 0
B) 1
C) 5
D)15
E) 25
F) Throws an error

// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;
numbers.push(number);

}

return total;
}

CSE 122 LEC 04: Stacks & Queues

sli.do #cse122Practice : Think

What is the return of this method?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;

q.add(number);
}

return total;
}

A) 0
B) 1
C) 5
D) 12
E) 15
F) Throws an error

CSE 122 LEC 04: Stacks & Queues

sli.do #cse122Practice : Pair

What is the return of this method?
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;

q.add(number);
}

return total;
}

A) 0
B) 1
C) 5
D) 12
E) 15
F) Throws an error

CSE 122 LEC 04: Stacks & Queues

Stack Sum bug
// numbers: bottom [1, 2, 3, 4, 5] top
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {

int number = numbers.pop();
total += number;

q.add(number);
}

// Still need to move back to the stack!
return total;

}

Loop Table
i total numbers numbers.size()

0 5 [4, 3, 2, 1]

41 9 [3, 2, 1]

2 312 [2, 1]

3 2Exit the loop!!

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review

• Queue Manipulation

• Stack Manipulation

• Problem Solving

CSE 122 LEC 04: Stacks & Queues

Problem Solving
• On their own, Stacks & Queues are

quite simple with practice
(few methods, simple model)
• Some of the problems we ask are

complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 LEC 04: Stacks & Queues

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!
• Brainstorming – Consider steps to solve problem before writing code

- Try to do an example “by hand” → outline steps
• Solve Sub-Problems – Is there a smaller part of the problem to solve?

- Move to queue first
• Debugging – Does your solution behave correctly on the example input.

- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that
is easier?

- Just looping over a queue and printing elements

CSE 122 LEC 04: Stacks & Queues

Common Stack & Queue Patterns
• Stack → Queue and Queue → Stack

- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S
• “Cycling” a queue: Inspect each element by repeatedly removing and

adding to back size times
- Careful: Watch your loop bounds when queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to
the Queue

CSE 122 LEC 04: Stacks & Queues

See you Friday!

• Practice with Stacks & Queues in Section

• Quiz on Monday (July 10th)

• Challenge problem in lecture on Friday

• P1, released Friday, will use Stacks & Queues

• Remember to do the PCM for Friday!

