
CSE 122LEC 14: JUnit Testing

CSE 122
LEC 16

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructor

TAs

Melissa Lin
Poojitha Arangam
Darel Gunawan
Colton Harris
Atharva Kashyap
Eesha Kunisetty

Audrey Lin
Di Mao
Steven Nguyen
Ben Wang
Jaylyn Zhang

JUnit Testing

Talk to your neighbors:

What is your favorite “classic” mobile
game?

(e.g. candy crush, temple run, fruit
ninja, 2048, etc)

BEFORE WE START

CSE 122LEC 14: JUnit Testing

Lecture Outline
• Announcements

• Optional

• Importance of Testing

• JUnit

• Example: Tic Tac Toe

CSE 122LEC 14: JUnit Testing

Announcements

• Final Exam on Wed + Fri @ 10:50 – 11:50am PCAR 192
- Review session on Monday Aug 14
- More resources/policies on course website

• Programming Assignment 3 due Sunday, Aug 13
• Resub 6 due Tuesday, Aug 15

https://courses.cs.washington.edu/courses/cse122/23su/exams/

CSE 122LEC 14: JUnit Testing

Exam Format
• 6 questions in total, each will receive one ESN grade

- Some questions might have sub-parts
- Reminder: Quiz and Exam grades are all mixed into the same bucket

• General format
- 3 Questions: Mix of Conceptual, Mechanical/Tracing, Debugging Problems
- 3 Questions: Programming Problems
- Wednesday – 3 questions
- Friday – 3 questions

• See sections 11, 13, and 14 for practice handwriting problems
• Practice finals posted on course website

CSE 122LEC 14: JUnit Testing

Exam Logistics
Most important bits
• Wednesday and Friday @ 10:50am – 11:50am in PCAR 192
• Seat assignments
• Don’t cheat

- Only have the exam open during the time (don’t’ start early; don’t work after)
- No electronic devices

• You can bring one 8.5x11 inch paper with notes (front and back)
- Will also provide a reference sheet (see course website)

• Bring husky card + pencil

Questions? Raise hand or ask on sli.do (#cse122)

CSE 122LEC 14: JUnit Testing

Lecture Outline
• Announcements

• Optional

• Importance of Testing

• JUnit

• Example: Tic Tac Toe

CSE 122LEC 14: JUnit Testing

Optional

Optional is a Java class that is used to handle
situations where a value is sometimes there.

You give Optional a type to hold (or potentially not
hold) when you are referring to its type.

e.g., Optional<String>, Optional<Integer>, Optional<Point>

CSE 122LEC 14: JUnit Testing

Optional Methods

The Optional class has more than just these methods, but these
are what you’ll need to focus on for this class!

Method Description
Optional.empty() Creates an empty Optional object

Optional.of(…) Creates an Optional object holding the object it’s
given

isEmpty() Returns true if there is no value stored, and false
otherwise

isPresent() Returns true if there is a value stored, and false
otherwise

get()
Returns the stored object from the Optional (if
one is stored; otherwise throws a
NoSuchElementException)

CSE 122LEC 14: JUnit Testing

Optional Methods
isEmpty(), isPresent(), and get() are called like
normal instance methods (on an actual instance of
Optional).

Optional.of(…) and Optional.empty() are called
differently

(Like the Math class methods)

CSE 122LEC 14: JUnit Testing

Lecture Outline
• Announcements

• Optional

• Importance of Testing

• JUnit

• Example: Tic Tac Toe

CSE 122LEC 14: JUnit Testing

(PCM) Importance of Testing
Software, written by people, controls
more and more of our day-to-day lives.

Bugs (just like the ones we all write) are
just as easy to write in this software.

Stakes can be quite high so bugs
can have catastrophic effects

Source: Hackaday

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

CSE 122LEC 14: JUnit Testing

sli.do #cse122Practice : Pair

Bugs you’ve experienced

Can you think of a bug(s) you’ve experienced or heard of
that have had serious effects?

If you can’t, can you think of any absurd bugs you’ve
seen?

CSE 122LEC 14: JUnit Testing

Lecture Outline
• Announcements

• Optional

• Importance of Testing

• JUnit

• Example: Tic Tac Toe

CSE 122LEC 14: JUnit Testing

JUnit Basics
• import statements to give you access to JUnit method annotations

and assertion methods!
• Method Annotations

- @Test
- @DisplayName
- …

• Assertion Methods
- assertEquals(expected, actual)
- assertTrue(boolean)
- assertFalse(boolean)
- …

CSE 122LEC 14: JUnit Testing

JUnit Testing
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;
import java.util.*;

public class ArrayListTest {
@Test
public void testAddAndGet() {

List<String> list = new ArrayList<>();
list.add("Hunter Schafer");
list.add("Miya Natsuhara");
list.add("CSE 122");

assertEquals("Hunter Schafer", list.get(0));
assertEquals("Miya Natsuhara", list.get(1));
assertEquals("CSE 122", list.get(2));

assertTrue(list.size() == 3);
}

}

put object into some expected state

Use assert statements to check if
observed state is what we expect

CSE 122LEC 14: JUnit Testing

Using JUnit
• Each @test method should be independent

- ie. set up its own state, make all relevant assertions

• An @test fails if any assert statement fails

• JUnit executes @test methods in an arbitrary order

CSE 122LEC 14: JUnit Testing

Using JUnit - Tips

• one @test method per distinct case (i.e., empty case, one element,
even, odd, some edge case, …)
• Might also want to test calling multiple methods to check that they work

together as expected

• assertEquals(expected, actual, message) can provide a
description of what the line is testing

• Good coding practices still apply
- Eg. you can write helper methods in your test file

CSE 122LEC 14: JUnit Testing

(PCM) How Many Test Cases Is Enough?
• In general, more tests –> more confidence!
• Try to think adversarially and try to break your own code with tests
• Specification Testing (based on the spec) vs. Clear-box Testing

(based on how you know your implementation works)
- Specification Testing you can do before writing your solution!
- Clear-box Testing you do after you've written your solution.

• Test a wide variety of different cases
- Think about boundary or "edge" cases in particular,

where the behavior should change

CSE 122LEC 14: JUnit Testing

Lecture Outline
• Announcements

• Optional

• Importance of Testing

• JUnit

• Example: Tic Tac Toe

CSE 122LEC 14: JUnit Testing

sli.do #cse122Practice : Pair

What test cases can you think of for the TicTacToe
spec?

CSE 122LEC 14: JUnit Testing

Closed or open box tests?
Closed box testing - write tests based on a specification
independent of any implementation.

Open box testing - write tests for a particular implementation.

Test Driven Development - write tests before the
implementation

CSE 122LEC 14: JUnit Testing

