CSE 122 Final Exam
Spring 2023

Name of Student:

Section (e.g., AA): Student Number (eg., 1234567):

The exam is divided into six questions with the following points:

Problem Area

1 Conceptual

2 Code Tracing

3 Debugging

4 Collections Programming

5 Objects Programming

6 Stacks/Queues Programming

Do not begin work on this exam until instructed to do so. Any student who starts early or
who continues to work after time is called will receive U’s on some problems as a penalty.

You are allowed one page of a reference sheet, front and back, as notes during the exam.
Space is provided for your answers. There is also a reference sheet at the end that you
should use. You are not allowed to access any other papers during the exam. You are NOT to
use any electronic devices while taking the test, including calculators. Anyone caught using
an electronic device will receive U’s on some problems as a penalty.

The exam is not, in general, graded on code quality and you do not need to include comments.
For the stack/queue and collections questions, however, you are expected to use generics
properly and to declare variables using interfaces when possible. You may only use the
methods on the cheat sheet for the data structures listed. For objects programming, you
should declare all fields to be private. Problems may specify more specific requirements.
You are not allowed to use programming constructs we haven’t discussed in class such as
break, continue, or returns from a void method on this exam.

Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

You are allowed to ask for scratch paper to use as additional space when writing answers,
but you must indicate on the original page for the problem that part of the solution is on
scratch paper. Failure to do so may result in your work on scratch paper not being graded.

If you finish the exam early, please hand your exam to the instructor and exit quietly
through the front door. During the last 5 minutes of the exam, please stay in your seats to
avoid disrupting others during the end of the exam.

FEach problem is graded on an E/S/N scale. In general, to earn an E on a problem your
solution must work without error and meet all the problem requirements. To earn an S, there
is allowance for minor errors in the solution, but the problem requirements must still be
met to earn an S. Unless specified by the problem, we do not grade on code quality.

Initial here to indicate you have read and agreed to these rules:

1. Conceptual: Each of these parts uses the Point.java implementation from class, also
included here for convenience:

public class Point {
private int x;
private int y;

public Point (int x, int y) {
this.x = x;
this.y = y;

}

public Point () {
this (0, 0);
}

public void translate(int dx, int dy) {
X += dx;
y += dy;

}

public double distanceToOrigin () {
return Math.sqgrt (Math.pow(x, 2) + Math.pow(y, 2));
}

public int getX() {
return x;

}

public int getY () {
return y;

}

public String toString() {
return “(“ + this.x + %, “ + this.y + “)7”;

}

Part A: Consider the following code snippet.
Point pl = new Point (2, 3);
Point p2 = new Point();
System.out.println (pl);
Point p3 = pl;
p3.translate (2, 4);
p3 = p2;
p2 = pl;
p3.translate(1l, 1);
System.out.println (p2);
System.out.println (p3);

Part Al: How many Point objects are created in this snippet? Answer in box below

Part A2: How many references to objects are created in this snippet?
Answer in box below

Part B: What is printed to the console by the code snippet from Part A?

Part C: (Select one option) We plan to add the following method to the Point.java class

listed above. Which of the options below would make the best comment for this new method of

our Point.java class?

public int mystery(List<Point> list) {

Iterator<Point> iter = list.iterator();
int n = 0;
while (iter.hasNext ()) {
Point p = iter.next();
if (p.distanceToOrigin() < this.distanceToOrigin()) {
iter.remove () ;
n++;

}
this.x += n;
return n;

}

<:> Removes some points from the given list.

(:) Removes all points from the given list which are further from the origin than this

point. Returns the number of removed points and moves this point right by the same

number.

<:> Removes all points from the given list which are closer to the origin than this

point. Returns the number of removed points and moves this point right by the same

number.

(:) Uses an iterator to remove all points from the given list which are closer to the

origin than this point. Updates this.x to be larger by the number of removed

points, also returns the number of removed points.

2. Code Tracing: Consider the method below.

public static void mystery3(int[][] arr) {
for (int i = 0; 1 < arr.length; i++) {

for (int j = 0; j < arr[i].length; j++) {
if (arr[i][3j] <= arr[j][i])
arr[i][j] *= 2;

}

For each 2d array below, indicate what it would hold after a call to mystery3 where it was
passed as a parameter.

Before mystery3 call After mystery3 call

([z21]

3. Debugging: Consider the following buggy implementation of divide. The intended behavior
of this method is to take a list of non-negative integers, and modify that list so that each
number is divided into two numbers that sum up to the original. If the number is even it
should be split into halves, if a number is odd, the larger half should appear first.

For example, if a variable called list stores this sequence of values:

(18, 7, 4, 24, 11]
The number 18 is divided into the pair (9, 9), the number 7 is divided into (4, 3), the
number 4 is divided into (2, 2), the number 24 is divided into (12, 12) and the number 11 is
divided into (6, 5). Thus, the call: divide(list); should cause list to store the following
sequence of values afterwards:

(9 9, 4, 3, 2, 2, 12, 12, 6, 5]

A TA wrote a buggy implementation of this method shown below.

1 public static void split(List<Integer> list) {
2 for (int i = 0; 1 < list.size(); i++) {

3. int n = list.get(i);

4. list.add(i, n / 2 + n % 2);

5 list.add(i + 1, n / 2);

6 }

7 }

Your task is to fix this implementation so that it behaves as described above. If you are
making significant changes to the structure of the method, it may be helpful to write your
whole solution from scratch. However, if you are only making minor edits to the code that
you can clearly explain, you can also write out just the edits below. If writing edits,
specifically mention which line(s) you will change and write out the code you would replace
them with. You will need to write correct code on the lines you change/add. If you are
deleting some code, make sure it’s clear what parts are being removed. If you are inserting
new code, make sure it is unambiguous where this new code belongs. Mention specific line
number (s) .

4. Collections Programming: Write a method called split that takes a set of strings as a
parameter and that returns the result of splitting the strings into different sets based on
the length of the strings. In particular, your method should return a map whose keys are
integers and whose values are sets of strings of that length. For example, if a variable
called words contains the following set of strings:

[to, be, or, not, that, is, the, question]

then the call split(words) should return a map whose values are sets of strings of equal
length and whose keys are the string lengths:

{2=[be, is, or, to], 3=[not, the], 4=[that], 8=[question]}

Notice that strings of length 2 like "be" and "is" appear in a set whose key is 2. If the
words set had instead stored these strings:

[four, score, and, seven, years, ago, our, fathers, brought, forth]
Then the method would return this map:

{3=[ago, and, our], 4=[four], 5=[forth, score, seven, years],
7=[brought, fathers]}

The set of strings passed to your method will not necessarily be in order, but the map
returned by your method should be ordered numerically by key and each set contained in the
map should be ordered alphabetically, as in the examples above.

Your method should construct the new map and each of the sets contained in the map but

should otherwise not construct any new data structures. It should also not modify the set
of words passed as a parameter. You should use interface types and generics appropriately.

Write your solution on the next page

5. Objects Programming: Consider the following interface Media. For this problem you are to
write a class called Book which implements the Media interface. The Book class should have a

constructor which takes one String parameter, the book’s title.

public interface Media {
// Returns the name of this piece of media, eg: the title of a movie or book.
public String getName () ;

// Adds a new rating of this media. Reviewer is the name of the person giving this
// rating. Reviewers may only give a single rating to a piece of media.

// Throws an IllegalArgumentException if stars is not between 1 and 5 inclusive, or
// if reviewer has already reviewed this media.

public void addRating(String reviewer, int stars);

// Change the rating given by a reviewer who has already reviewed this media.

// Throws an IllegalArgumentException if newStars isn’t between 1 and 5 inclusive,
// if reviewer hasn’t reviewed this media before. (see addRating for first-time

// reviewers) .

public void changeRating(String reviewer, int newStars);

// Returns the average of all ratings this media has received.
public double averageRating();

// Returns true if this piece of media has an equal or higher average rating than
// other. Returns false if other has a higher average rating.
public boolean isRatedHigher (Media other);

// Returns a string representation of this piece of media and it’s reviews. The format

// is as follows:

// <media name> - rated <average rating> out of 5 stars

// Eg, for a piece of media titled “Sharknado” with a 2 star review and a 5 star
// review, the resulting toString would look like:

// Sharknado - rated 3.5 out of 5 stars

// Note that the average value is not rounded.

public String toString();

For example, if the following lines were executed using your Book class...

Media bookl = new Book (“All Systems Red”);
bookl.addRating (“Tristan”, 5);
bookl.addRating (“Hunter”, 3);
bookl.changeRating (“Hunter”, 2);

Media book2 = new Book (“Deadly Education”);
book2.addRating (“Miya”, 4);

book2.addRating (“Tristan”, 2);
book2.changeRating (“Tristan”, 5);

Then the following methods would return...

bookl.getName () ; // All Systems Red

bookl.averageRating () ; // 3.5

book2.averageRating () ; // 4.5

bookl.toString () ; // All Systems Red - rated 3.5 out of 5 stars
book2.toString() ; // Deadly Education - rated 4.5 out of 5 stars
bookl.isRatedHigher (book2); // false

Your Book class should implement the Media interface. Your Book class should have private

fields and implement the methods described above.

Write your solution on the next page.

6. Stacks/Queues Programming: Write a method called compressDuplicates that takes a stack
of integers as a parameter and that replaces each sequence of duplicates with a pair of
values representing a count of the number of duplicates followed by the number. For
example, suppose a variable called s stores the following sequence of values:

bottom [2, 2, 2, 2, 2, -5, -5, 3, 3, 3, 3, 4, 4, 1, 0, 17, 17] top
and we make the following call:

compressDuplicates(s);
Then s should store the following values after the call:

bottom [5, 2, 2, -5, 4, 3, 2, 4, 1, 1, 1, 0, 2, 17] top

This new stack indicates that the original had 5 occurrences of 2 at the bottom of the stack
followed by 2 occurrences of -5 followed by 4 occurrences of 3, and so on. This process
works best when there are many duplicates in a row. For example, if the stack instead had
stored:

bottom [10, 20, 10, 20, 10, 20] top
Then the resulting stack ends up being longer than the original:

bottom [1, 10, 1, 20, 1, 10, 1, 20, 1, 10, 1, 20] top

For an E, your solution must obey the following restrictions. A solution that disobeys them
may get an S, but it is not guaranteed.

* You may use one queue as auxiliary storage. You may not use other structures
(arrays, lists, etc.), but you can have as many simple variables as you like.

* Use the Queue interface and Stack/LinkedlList classes discussed in class.

* Use stacks/queues in stack/queue-like ways only. Do not use index-based methods
such as get, search, or set, or for-each loops or iterators. You may call add,
remove, push, pop, peek, isEmpty, and size.

* Do not use advanced material such as recursion to solve the problem.

You have access to the following two methods and may call them as needed to help you solve
the problem:

public static void s2g(Stack<Integer> s, Queue<Integer> q) {
while (!s.isEmpty()) {
g.add (s.pop()) ;

}
public static void g2s(Queue<Integer> g, Stack<Integer> s) {

while (!g.isEmpty()) {
s.push (g.remove ()) ;

}

You should write your solution in the box on the next page. If you need additional space,
please indicate that your solution is continued on scratch paper.

(You may use the rest of this page as scratch paper if necessary)

A A CSE 122 Final Exam Reference Sheet * 2

(DO NOT WRITE ANY WORK YOU WANTED GRADED ON THIS REFERENCE SHEET. IT WILL NOT BE GRADED)

Examples of Constructing Various Collections

List<Integer> list = new ArrayList<Integer>();

Queue<Double> queue = new LinkedList<Double> () ;

Stack<String> stack = new Stack<>(); // Diamond operator also permitted
Set<String> words = new HashSet<>();

Map<String, Integer> counts = new TreeMap<String, Integer>();

Methods Found in ALL collections (Lists, Stacks, Queues, Sets, Maps)

equals (collection)

Returns t rue if the given other collection contains the same elements

isEmpty () Returns true if the collection has no elements
size () Returns the number of elements in a collection
toString () Returns a string representation suchas " [10, -2, 43]"

Methods Found in both Lists and Sets (ArrayList, LinkedList, HashSet, TreeSet)

add (value)

Adds value to collection (appends at end of list)

addall (collection)

Adds all the values in the given collection to this one

contains (value)

Returns true if the given value is found somewhere in this collection

iterator ()

Returns an Iterator object to traverse the collection's elements

clear ()

Removes all elements of the collection

remove (value)

Finds and removes the given value from this collection

removeAll (collection)

Removes any elements found in the given collection from this one

retainAll (collection)

Removes any elements not found in the given collection from this one

List<Type> Methods

add (index, value)

Inserts given value at given index, shifting subsequent values right

indexOf (value)

Returns first index where given value is found in list (-1 if not found)

get (index)

Returns the value at given index

lastIndexOf (value)

Returns last index where given value is found in list (-1 if not found)

remove (index)

Removes/returns value at given index, shifting subsequent values left

set (index, value)

Replaces value at given index with given value

Stack<Type> Methods (only allowed methods plus size and isEmpty)

pop () Removes the top value from the stack and returns it;
pop throw an EmptyStackException if the stack is empty
push (value) Places the given value on top of the stack
peek () Returns the value at the top from the stack without removing it;
throws a EmptyStackException if the stack is empty
Queue<Type> Methods (only allowed methods plus size and isEmpty)
add (value) Places the given value at the back of the queue
remove () Removes the value from the front of the queue and returns it;
throws a NoSuchElementException if the queue is empty
peek () Returns the value at the front of the queue without removing it;
throws a NoSuchElementException if the queue is empty

Map<KeyType, ValueType> Methods

containsKey(key)

true if the map contains a mapping for the given key

get (key)

The value mapped to the given key (null if none)

keySet ()

Returns a Set of all keys in the map

put (key, value)

Adds a mapping from the given key to the given value

putAll (Map)

Adds all key/value pairs from the given map to this map

remove(kEY)

Removes any existing mapping for the given key

toString () Returns a string such as "{a=90, d=60, c=70}"
values () Returns a Collection ofall values in the map
Iterator<Type> Methods
hasNext () | Returns true if there is another element in the iterator
next () Returns the next value in the iterator and progresses the iterator forward one element
remove () | Removes the previous value returned by the next. Can only call once after each call to next ()
string Methods
charAt (i) The character in this String at a given index

contains (str)

true if this String contains the other's characters inside it

endsWith (str)

true if this String ends with the other's characters

equals (str)

true if this String is the same as str

equalsIgnoreCase (Str)

true if this String is the same as str, ignoring capitalization

indexOf (str)

First index in this String where given String begins (-1 if not found)

lastIndexOf (str)

Last index in this String where given String begins (-1 if not found)

length ()

Number of characters in this String

isEmpty ()

true if this String is the empty string

startsWith (str)

true if this String begins with the other's characters

substring (i, j) Characters in this String from index i (inclusive) to j (exclusive)
substring (i) Characters in this String from index i (inclusive) to the end
toLowerCase (), toUpperCase () | A new String with all lowercase or uppercase letters

Math Methods
abs (x) Returns the absolute value of x

Returns the larger of x and y

(
max(x, y)
(

min(x, y)

Returns the smaller of x and y

pow (x, ¥) Returns the value of x to the y power
random () Returns a random number between 0.0 and 1.0
round (x)

Returns x rounded to the nearest integer

public class Example implements InterfaceExample {

private type field;

public Example () {
field = something;

}

public void method() {
// do something

}

Object/Interface Syntax

public interface InterfaceExample {
public void method() ;
}

