
CSE 122LEC 09: Nested Collections sli.do #cse122

CSE 122
LEC 09

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructors

TAs

Tristan Huber & Hunter Schafer
Ambika
Andrew
Audrey
Autumn
Ayush
Ben
Colton
Di
Eesha
Elizabeth

Evelyn
Jacob
Jaylyn
Jin
Joe
Kevin
Leon
Megana
Melissa
Mia

Poojitha
Rishi
Rucha
Shivani
Shreya
Steven
Suhani
Yijia
Ziao

Nested Collections

Talk to your neighbors:
What was the example you found for
Creative Project 1 about how data set

bias has caused harm to people?

BEFORE WE START

CSE 122LEC 09: Nested Collections sli.do #cse122

Agenda
•Announcements

•Review/Finish: mostFrequentStart

•Recap: Nested Collections

•Practice: Search Engine

• Images Debrief

CSE 122LEC 09: Nested Collections sli.do #cse122

Announcements

• Resub 2 Form posted
- Due Tuesday 5/2 @ 11:59 pm

• Quiz Retake Form posted
- for Tuesday 5/2 retake

- complete form by 11:59 Sunday 4/30

• Quiz 1 on Tuesday (5/2)!

• Programming Assignment 2 out this morning
- Due in two weeks

- Most complex assignment so far! Start early!

CSE 122LEC 09: Nested Collections sli.do #cse122

Agenda
•Announcements

•Review/Finish: mostFrequentStart

•Recap: Nested Collections

•Practice: Search Engine

• Images Debrief

CSE 122LEC 09: Nested Collections sli.do #cse122

(Review) Map ADT
•Data structure to map keys to values

- Keys can be any* type; Keys are unique
- Values can be any type

•Example: Mapping nucleotides to counts!

•Operations
- put(key, value): Associate key to value

- Overwrites duplicate keys

- get(key): Get value for key
- remove(key): Remove key/value pair

Same as Python’s dict

CSE 122LEC 09: Nested Collections sli.do #cse122

Agenda
•Announcements

•Review/Finish: mostFrequentStart

•Recap: Nested Collections

•Practice: Search Engine

• Images Debrief

CSE 122LEC 09: Nested Collections sli.do #cse122

(PCM) Nested Collections
•The values inside a Map can be any

type, including data structures

•Common examples:
- Mapping Section -> Set of students in

that section
- Mapping Recipe -> Set of ingredients in

that recipe
- Or even Map<String, Map<String, Double>>

for units!

CSE 122LEC 09: Nested Collections sli.do #cse122

(PCM) Updating Nested Collections
The value inside the Map is a reference
to the data structure!

- Think carefully about number of references
to a particular object

courses.put("CSE 123", new
HashSet<String>());
courses.get("CSE 123").add("Kasey");

Set<String> cse123 = courses.get("CSE 123");
cse123.add("Brett");

CSE 122LEC 09: Nested Collections sli.do #cse122

sli.do #cse122Practice : Think

Suppose map had the following state. What
would its state be after running this code?
map: {”KeyA"=[1, 2], ”KeyB"=[3], ”KeyC"=[4, 5, 6]}

Set<Integer> nums = map.get("KeyA");
nums.add(7);
map.put("KeyB", nums);
map.get("KeyA").add(8);
map.get("KeyB").add(9);

A. {"KeyA"=[1, 2], "KeyB"=[1, 2, 7], "KeyC"=[4, 5, 6]}
B. {"KeyA"=[1, 2, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}
C. {"KeyA"=[1, 2, 7, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}
D. {"KeyA"=[1, 2, 7, 8, 9], "KeyB"=[1, 2, 7, 8, 9], "KeyC"=[4, 5, 6]}

CSE 122LEC 09: Nested Collections sli.do #cse122

sli.do #cse122Practice : Pair

Suppose map had the following state. What
would its state be after running this code?
map: {”KeyA"=[1, 2], ”KeyB"=[3], ”KeyC"=[4, 5, 6]}

Set<Integer> nums = map.get("KeyA");
nums.add(7);
map.put("KeyB", nums);
map.get("KeyA").add(8);
map.get("KeyB").add(9);

A. {"KeyA"=[1, 2], "KeyB"=[1, 2, 7], "KeyC"=[4, 5, 6]}
B. {"KeyA"=[1, 2, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}
C. {"KeyA"=[1, 2, 7, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}
D. {"KeyA"=[1, 2, 7, 8, 9], "KeyB"=[1, 2, 7, 8, 9], "KeyC"=[4, 5, 6]}s

CSE 122LEC 09: Nested Collections sli.do #cse122

Map Type Examples
Count of A, T, C, Gs in a DNA sequence

Look up all students in each section based on their TA name…

Represent people in line at a grocery store grouped by the cashier
they’re waiting for

Map<Character, Integer>

Map<String, Set<String>>

Map<Integer, Queue<String>>

A, T, C, or G occurrence count

TA name Student names

Lane Number Customer names in a
queue

CSE 122LEC 09: Nested Collections sli.do #cse122

Agenda
•Announcements

•Review/Finish: mostFrequentStart

•Recap: Nested Collections

•Practice: Search Engine

• Images Debrief

CSE 122LEC 09: Nested Collections sli.do #cse122

Background: Search Engines
•A search engine receives a query and returns a set of relevant

documents. Examples: Google.com, Mac Finder, more.
- Queries often can have more

•A search engine involves two main components
- An index to efficiently find the set of documents for a query

- Will focus on “single word queries” for today’s example

- A ranking algorithm to order the documents from most to least relevant
- Not the focus of this example

•Goal: Precompute a data structure that helps find the relevant
documents for a given query

CSE 122LEC 09: Nested Collections sli.do #cse122

Inverted Index
•An inverted index is a Mapping from possible query words to the set

of documents that contain that word
- Answers the question:

“What documents contain
the word ‘corgis’?”

CSE 122LEC 09: Nested Collections sli.do #cse122

(Optional) Ranking Results
• There is no one right way to define which documents are “most relevant”

There are approximations, but make decisions about what relevance means

• Idea 1: Documents that have more hits of the query should come first
- Pro: Simple

- Con: Favors longer documents (query: “the dogs” will favor long documents with
lots of “the”s)

• Idea 2: Weight query terms based on their “uniqueness”. Often use some
sort of score for “Term Frequency – Inverse Document Frequency (TF-IDF)
- Pro: Doesn’t put much weight on common words like “the”

- Cons: Complex, many choices in how to compute that yield pretty different rankings

• Idea 3: Much more! Most companies keep their ranking algorithms very
very secret ☺

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

CSE 122LEC 09: Nested Collections sli.do #cse122

Agenda
•Announcements

•Review/Finish: mostFrequentStart

•Recap: Nested Collections

•Practice: Search Engine

• Images Debrief

CSE 122LEC 09: Nested Collections sli.do #cse122

Data Bias
•Common Misconception: Models or Artificial Intelligence (AI) are

somehow “less biased” or “more objective” than humans. Not true.

•The programs we use operate on real-world data, and will often
reflect the biases that data contains

•Have to carefully consider the context and limitations of the data we
gather. If the data an algorithm is built on is vastly different than the
context in which it’s used, some pretty awful outcomes can happen

CSE 122LEC 09: Nested Collections sli.do #cse122

Data Bias

CSE 122LEC 09: Nested Collections sli.do #cse122

What to do?
•Obviously, ideal to have datasets that aren’t biased in the first place.

- But might not always be possible if we can’t fix the sources of the bias in the real
world...

• AI/Models aren’t “neutral” or “more objective”, they just quickly and
automatically codify the status quo (and perpetuate biases)
- Garbage in → Garbage out

• Lots of work going into how to de-bias models even if they are trained on
biased data. Active area of research!
- Key take-away: None of this comes “for free”, requires hard work to fight bias

• Ask ourselves:
- What biases might be present in my data?
- What assumptions might I be making about who is using my program?
- How can I write code to be more inclusive?
- What happens when (not if) mistakes happen? Who potentially benefits and who is

potentially harmed?

