
CSE 122 LEC 08: Maps

CSE 122
LEC 08

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructors

TAs

Tristan Huber & Hunter Schafer
Ambika
Andrew
Audrey
Autumn
Ayush
Ben
Colton
Di
Eesha
Elizabeth

Evelyn
Jacob
Jaylyn
Jin
Joe
Kevin
Leon
Megana
Melissa
Mia

Poojitha
Rishi
Rucha
Shivani
Shreya
Steven
Suhani
Yijia
Ziao

Maps

Talk to your neighbors:
What is your least favorite

root vegetable?

BEFORE WE START

Music: Miya’s 23wi CSE 122 Playlist

https://open.spotify.com/playlist/6qTTy2RQxmpsklo7EHwU5i?si=7c8233d38102427d

CSE 122 LEC 08: Maps

Lecture Outline
• Announcements

•Map Review

•Debrief PCM: Count Words

•Practice: joinRosters

•Practice: mostFrequentStart

CSE 122 LEC 08: Maps

Announcements

•Quiz 1 is Tuesday, Feb 7

•Retake and Resubmission forms for next week will be
posted later today

•C1 due tomorrow (Thurs, Feb 2)

•P2 released Fri, Feb 3

CSE 122 LEC 08: Maps

Lecture Outline
•Announcements

• Map Review

•Debrief PCM: Count Words

•Practice: joinRosters

•Practice: mostFrequentStart

CSE 122 LEC 08: Maps

🎉 NEW DATA STRUCTURE DAY!! 🎉

Map

CSE 122 LEC 08: Maps

(PCM) Map - What is it good for?

What is it?

● Keeps associations between unique keys and (non-unique) values

● All keys are one type. All values are one type

○ But a keys might be a different type from values

● Dynamically sized

What is Map particularly good at?

● put(key, value) - associates key with a value

● get(key) - returns the value associated with a key (if any)

● put and get are either super fast (HashMap) or quite fast (TreeMap)

CSE 122 LEC 08: Maps

(PCM) Abstract Data Types
more

abstract

more
specific

ADT

Interface

Implementation

Examples: queue, stack, list,

Examples: Queue<>, List<>

Examples: ArrayList,
LinkedList, array,
Stack, 2D array,

Language specific

Language agnostic

set, map (aka dictionary)

Set<>, Map<>

HashSet, TreeSet,
HashMap, TreeMap

CSE 122 LEC 08: Maps

(PCM) Programming with Maps
• Interface: Map

• Implementations: TreeMap, HashMap

// Making a Map
Map<String, String> favArtistToSong = new TreeMap<>();

// adding elements to the above Map
favArtistToSong.put("Steve Lacy", "Dark Red");
favArtistToSong.put("The Cranberries", "Linger");
favArtistToSong.put("Umi", "Bet");

// Getting a value for a key
String song = favArtistToSong.get("Umi");
System.out.println(song);

CSE 122 LEC 08: Maps

(PCM) Programming with Maps
Methods Description

put(key, value) adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

CSE 122 LEC 08: Maps

(PCM) Map Implementations

● One Map Interface

● Two Map implementations*
- TreeMap – Pretty fast, sorted keys

- HashMap – Extremely fast, unsorted keys

*similar to the TreeSet and HashSet implementations

Map<String, Integer> map1 = new TreeMap<>();
Map<String, Integer> map2 = new HashMap<>();
...

CSE 122 LEC 08: Maps

sli.do #cse122Practice : Think

Select the method calls required to modify the given
map m as follows:
Assume m’s contents are

98030="Kent"
98178="Seattle"
98166="Burien"
98041="Bothell"

We want to modify m so that its contents are
98030="Kent"
98178="Tukwila"
98166="Burien"
98041="Bothell"
98101="Seattle"
98126="Seattle"

A. m.put(98178, "Tukwila");

B. m.remove(98178);

C. m.put(98126, "Seattle");

D. m.get(98178, "Seattle");

E. m.put(98101, "Seattle");

CSE 122 LEC 08: Maps

sli.do #cse122Practice : Pair

Select the method calls required to modify the given
map m as follows:
Assume m’s contents are

98030="Kent"
98178="Seattle"
98166="Burien"
98041="Bothell"

We want to modify m so that its contents are:
98030="Kent"
98178="Tukwila"
98166="Burien"
98041="Bothell"
98101="Seattle"
98126="Seattle"

A. m.put(98178, "Tukwila");

B. m.remove(98178);

C. m.put(98126, "Seattle");

D. m.get(98178, "Seattle");

E. m.put(98101, "Seattle");

CSE 122 LEC 08: Maps

sli.do #cse122Practice : Pair

Select the method calls required to modify the given
map m as follows:
Assume m’s contents are

98030="Kent"
98178="Seattle"
98166="Burien"
98041="Bothell"

We want to modify m so that its contents are:
98030="Kent"
98178="Tukwila"
98166="Burien"
98041="Bothell"
98101="Seattle"
98126="Seattle"

A. m.put(98178, "Tukwila");

B. m.remove(98178);

C. m.put(98126, "Seattle");

D. m.get(98178, "Seattle");

E. m.put(98101, "Seattle");

CSE 122 LEC 08: Maps

Lecture Outline
•Announcements

•Map Review

• Debrief PCM: Count Words

•Practice: joinRosters

•Practice: mostFrequentStart

CSE 122 LEC 08: Maps

Lecture Outline
•Announcements

•Map Review

•Debrief PCM: Count Words

• Practice: joinRosters

•Practice: mostFrequentStart

CSE 122 LEC 08: Maps

joinRosters
Write a method joinRosters that combines a Map from student name to
quiz section, and a Map from TA name to quiz section and prints all pairs of
students/TAs.

For example, if studentSections stores the following map:
{Alan=AC, Jerry=AB, Nina=AA, Sharon=AB, Steven=AB, Tanya=BA}

And taSections stores the following map
{Ben=BA, Melissa=AA, Andrew=AB, Atharva=AC}

AC: Alan – Atharva
AB: Jerry – Andrew
AA: Nina - Melissa
AB: Sharon – Andrew
AB: Steven – Andrew
BA: Tanya - Ben

CSE 122 LEC 08: Maps

Lecture Outline
•Announcements

•Map Review

•Debrief PCM: Count Words

•Practice: joinRosters

• Practice: mostFrequentStart

CSE 122 LEC 08: Maps

mostFrequentStart
Write a method called mostFrequentStart that takes a Set of words and
does the following steps:

•Organizes words into “word families” based on which letter they start
with

• Selects the largest “word family” as defined as the family with the
most words in it

•Returns the starting letter of the largest word family (and if time,
should update the Set of words to only have words from the selected
family).

CSE 122 LEC 08: Maps

mostFrequentStart
For example, if the Set words stored the values
["hello", "goodbye", "library", "literary", "little", "repel"]

The word families produced would be
'h' -> 1 word ("hello")

'g' -> 1 word ("goodbye")

'l' -> 3 words ("library", "literary", "little")

'r' -> 1 word ("repel")

Since 'l' has the largest word family, we return 3 and modify the Set to
only contain Strings starting with 'l'.

