
CSE 122LEC 05: Stacks & Queues Practice

CSE 122
LEC 05

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructors

TAs

Tristan Huber & Hunter Schafer
Ambika
Andrew
Audrey
Autumn
Ayush
Ben
Colton
Di
Eesha
Elizabeth

Evelyn
Jacob
Jaylyn
Jin
Joe
Kevin
Leon
Megana
Melissa
Mia

Poojitha
Rishi
Rucha
Shivani
Shreya
Steven
Suhani
Yijia
Ziao

Stacks & Queues
Practice

Talk to your neighbors:
Debate: Are Pop-Tarts ravioli?

BEFORE WE START

CSE 122LEC 05: Stacks & Queues Practice

Lecture Outline
•Announcements

• Quick Recap

• copyStack Review

• Structured Example: spliceStack

CSE 122LEC 05: Stacks & Queues Practice

Announcements

•Quiz 0
-Feedback released later today
-Retake logistics posted this morning

•P0 feedback was released yesterday
-Resubmission logistics posted this morning
-Grade checker

•P1 released today (due next Thurs, Apr 20)

https://docs.google.com/spreadsheets/d/19M4gwExCZbLaFQ64YHVVYjhZklgeXO3xJsyIWNdnROQ/edit?usp=sharing

CSE 122LEC 05: Stacks & Queues Practice

Quiz Retakes

•Time slots available on Tuesdays
-Must sign up beforehand
-Must actually show up

•Max one retake per quiz
-Retake must be completed within 3 weeks of original quiz date

•Quiz 0 Retake problems will not be the same as Quiz 0, but
will be generally analogous
- Same structure, same learning objectives

•Best-per-problem grading policy

CSE 122LEC 05: Stacks & Queues Practice

Lecture Outline
• Announcements

•Quick Recap

• copyStack Review

• Structured Example: spliceStack

CSE 122LEC 05: Stacks & Queues Practice

(Recap) Stacks & Queues
• Some collections are constrained, only use optimized operations

- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added

queue

front back

1 2 3
addremove, peek

stack

top 3
2

bottom 1

pop, peekpush

CSE 122LEC 05: Stacks & Queues Practice

(Recap) Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c"); // bottom ["a", "b", "c"] top
System.out.println(s.pop()); // "c"

- Stack has other methods that we will ask you not to use

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

CSE 122LEC 05: Stacks & Queues Practice

(Recap) Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back
System.out.println(q.remove()); // 42

- IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object.
- This has to do with a topic we'll discuss later called interfaces.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

CSE 122LEC 05: Stacks & Queues Practice

(Recap) Problem Solving
• On their own, Stacks & Queues are

quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive
- sum(Stack) is hard with a Queue as

the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122LEC 05: Stacks & Queues Practice

(Recap) Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is
easier?
- Just looping over a queue and printing elements

CSE 122LEC 05: Stacks & Queues Practice

Metacognition
•Metacognition: asking questions about your solution process.

• Examples:
- While debugging: explain to yourself why you’re making this change to your

program.

- Before running your program: make an explicit prediction of what you expect to
see.

- When coding: be aware when you’re not making progress, so you can take a break
or try a different strategy.

- When designing:
- Explain the tradeoffs with using a different data structure or algorithm.

- If one or more requirements change, how would the solution change as a result?

- Reflect on how you ruled out alternative ideas along the way to a solution.

- When studying: what is the relationship of this topic to other ideas in the course?

CSE 122LEC 05: Stacks & Queues Practice

(Recap) Common Stack & Queue Patterns
• Stack → Queue and Queue → Stack

- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S

• “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times
- Careful: Watch your loop bounds when queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to
the Queue

CSE 122LEC 05: Stacks & Queues Practice

sli.do #cse122Practice : Think

What does s
contain after
mystery finishes?

// s: bottom [0, 1, 2, 3, 4] top
public static void mystery(Stack<Integer> s) {

 Stack<Integer> s2 = new Stack<Integer>();

 Queue<Integer> q = new LinkedList<Integer>();

 // s -> s2

 while (!s.isEmpty()) {

 s2.push(s.pop());

 }

 // s2 -> q

 while(!s2.isEmpty()) {

 q.add(s2.pop());

 }

 // q -> s

 while (!q.isEmpty()) {

 s.add(q.remove());

 }

}

A) bottom [0, 1, 2, 3, 4] top

B) bottom [4, 3, 2, 1, 0] top

CSE 122LEC 05: Stacks & Queues Practice

sli.do #cse122Practice : Pair

What does s
contain after
mystery finishes?

// s: bottom [0, 1, 2, 3, 4] top
public static void mystery(Stack<Integer> s) {

 Stack<Integer> s2 = new Stack<Integer>();

 Queue<Integer> q = new LinkedList<Integer>();

 // s -> s2

 while (!s.isEmpty()) {

 s2.push(s.pop());

 }

 // s2 -> q

 while(!s2.isEmpty()) {

 q.add(s2.pop());

 }

 // q -> s

 while (!q.isEmpty()) {

 s.add(q.remove());

 }

}

A) bottom [0, 1, 2, 3, 4] top

B) bottom [4, 3, 2, 1, 0] top

CSE 122LEC 05: Stacks & Queues Practice

Lecture Outline
• Announcements

• Quick Recap

• copyStack Review

• Structured Example: spliceStack

CSE 122LEC 05: Stacks & Queues Practice

(PCM) copyStack
Write a method copyStack that takes a stack of integers as a
parameter and returns a copy of the original stack (i.e., a new stack
with the same values as the original, stored in the same order as the
original).

Your method should create the new stack and fill it up with the same
values that are stored in the original stack. It is not acceptable to return
the same stack passed to the method; you must create, fill, and return
a new stack.

You may use one queue as auxiliary storage.

CSE 122LEC 05: Stacks & Queues Practice

Lecture Outline
• Announcements

• Quick Recap

• copyStack Review

• Structured Example: spliceStack

CSE 122LEC 05: Stacks & Queues Practice

spliceStack
Write a method called spliceStack that takes as parameters a stack
of integers s, a start position i, and an ending position j, and that
removes a sequence of elements from s starting at the i’th element
from the bottom of the stack up to (but not including) the j’th element
from the bottom of the stack (where position 0 is the bottom of the
stack), returning these values in a new stack. The ordering of elements
in both stacks should be preserved.

stack

top

8 4

1 3

3 2

4 1

bottom 1 0

spliceStack(s, 1, 3)

s

CSE 122LEC 05: Stacks & Queues Practice

spliceStack
Write a method called spliceStack that takes as parameters a stack
of integers s, a start position i, and an ending position j, and that
removes a sequence of elements from s starting at the i’th element
from the bottom of the stack up to (but not including) the j’th element
from the bottom of the stack (where position 0 is the bottom of the
stack), returning these values in a new stack. The ordering of elements
in both stacks should be preserved.

top
8
1

bottom 1
spliceStack(s, 1, 3)

s

top
3

bottom 4

New stack returned by
method

CSE 122LEC 05: Stacks & Queues Practice

Common Exceptions
IllegalArgumentException - When a client passes in an invalid parameter

IllegalStateException - When the state of the program should not be
possible. For example if you had a program that a user logged into it might help
to throw this exception if they are ever suddenly logged out.

FileNotFoundException - If you try to read a file that is not there

IndexOutOfBoundsException - If an invalid index is accessed

