
CSE 122 LEC 04: Stacks & Queues

CSE 122
LEC 04

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructors

TAs

Tristan Huber & Hunter Schafer
Ambika
Andrew
Audrey
Autumn
Ayush
Ben
Colton
Di
Eesha
Elizabeth

Evelyn
Jacob
Jaylyn
Jin
Joe
Kevin
Leon
Megana
Melissa
Mia

Poojitha
Rishi
Rucha
Shivani
Shreya
Steven
Suhani
Yijia
Ziao

Stacks & Queues

Talk to your neighbors:
What are your favorite/least favorite

classes at UW so far?

BEFORE WE START

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
• Announcements

•Review: ADTs, Stacks & Queues

•Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 LEC 04: Stacks & Queues

Announcements

• Quiz 0
- Grades available in a couple days

- Retake info on Friday

• Creative Project (C0) due tomorrow

• Programming Assignment 1 (P1) will be released Friday
- It will be due next Thursday (4/20)

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
•Announcements

• Review: Stacks & Queues

•Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 LEC 04: Stacks & Queues

(PCM) Abstract Data Types
• Abstract Data Type (ADT): A specification of a collection of data and

the operations that can be performed on it.
- Describes what a collection does, not how it does it

•We don't know exactly how a stack or queue is implemented, and we
don't need to.
- Only need to understand high-level idea of what a collection does and its

operations

- Stack: retrieves elements in reverse order as added.
Operations: push, pop, peek, …

- Queue: retrieves elements in same order as added.
Operations: add, remove, peek, …

CSE 122 LEC 04: Stacks & Queues

(PCM) Abstract Data Types
more

abstract

more
specific

ADT

Interface

Implementation

Examples: queue, stack, list

Examples: Queue<>, List<>

Examples: ArrayList,
LinkedList, array,
Stack

Language specific

Language agnostic

CSE 122 LEC 04: Stacks & Queues

🎉 NEW DATA STRUCTURE DAY!! 🎉

Stack

Queue

CSE 122 LEC 04: Stacks & Queues

Stack - What is it good for?

What is it?

● A Last-in-First-out (LIFO) data structure

○ Elements are removed in the reverse order to how they were added

● All elements must be of same type*

● Dynamically sized

What is Stack particularly good at?

● push - add element to top

● pop - remove element from top

● Supported operations are few but very efficient
stack

top 3
2

bottom 1

pop, peekpush

CSE 122 LEC 04: Stacks & Queues

(PCM) Stacks

push

bottom

top

pop

CSE 122 LEC 04: Stacks & Queues

Stacks in Computer Science
•Programming languages and compilers:

- method calls are placed onto a stack (call=push, return=pop)
- compilers use stacks to evaluate expressions

•Matching up related pairs of things:
- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations

CSE 122 LEC 04: Stacks & Queues

(PCM) Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c"); // bottom ["a", "b", "c"] top
System.out.println(s.pop()); // "c"

- Stack has other methods that we will ask you not to use

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

CSE 122 LEC 04: Stacks & Queues

Queue - What is it good for?

What is it?

● A First-in-First-out (FIFO) data structure

○ Elements are removed in the same order to how they were added

● All elements must be of same type*

● Dynamically sized

What is Queue particularly good at?

● add - add element to back

● remove - remove element from front

● Supported operations are few but very efficient
queue

front back

1 2 3
addremove, peek

CSE 122 LEC 04: Stacks & Queues

(PCM) Queue

add

remove

front back

CSE 122 LEC 04: Stacks & Queues

Queues in Computer Science
•Operating systems:

- queue of print jobs to send to the printer
- queue of programs / processes to be run
- queue of network data packets to send

•Programming:
- modeling a line of customers or clients
- storing a queue of computations to be performed in order

•Real world examples:
- people on an escalator or waiting in a line
- cars at a gas station (or on an assembly line)

CSE 122 LEC 04: Stacks & Queues

(PCM) Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

- IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
•Announcements

•Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 LEC 04: Stacks & Queues

sli.do #cse122Practice : Think

What is the return of this method?
// numbers: top [5, 4, 3, 2, 1] bottom
public static int sum(Stack<Integer> numbers) {
 Queue<Integer> q = new LinkedList<>();

 int total = 0;
 for (int i = 0; i < numbers.size(); i++) {
 int number = numbers.pop();
 total += number;

 q.add(number);
 }

 // Still need to move back to the stack!
 return total;
}

A) 0
B) 1
C) 5
D) 12
E) 15
F) Throws an error

CSE 122 LEC 04: Stacks & Queues

sli.do #cse122Practice : Pair

What is the return of this method?
// numbers: top [5, 4, 3, 2, 1] bottom
public static int sum(Stack<Integer> numbers) {
 Queue<Integer> q = new LinkedList<>();

 int total = 0;
 for (int i = 0; i < numbers.size(); i++) {
 int number = numbers.pop();
 total += number;

 q.add(number);
 }

 // Still need to move back to the stack!
 return total;
}

A) 0
B) 1
C) 5
D) 12
E) 15
F) Throws an error

CSE 122 LEC 04: Stacks & Queues

Stack Sum bug
// numbers: top [5, 4, 3, 2, 1] bottom
public static int sum(Stack<Integer> numbers) {
 Queue<Integer> q = new LinkedList<>();

 int total = 0;
 for (int i = 0; i < numbers.size(); i++) {
 int number = numbers.pop();
 total += number;

 q.add(number);
 }

 // Still need to move back to the stack!
 return total;
}

Loop Table

i total numbers numbers.size()

0 5 [4, 3, 2, 1]

41 9 [3, 2, 1]

2 312 [2, 1]

3 2Exit the loop!!

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
•Announcements

•Review: Stacks & Queues

•Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 LEC 04: Stacks & Queues

Lecture Outline
•Announcements

•Review: Stacks & Queues

•Queue Manipulation

• Stack Manipulation

- Problem Solving

CSE 122 LEC 04: Stacks & Queues

Problem Solving
•On their own, Stacks & Queues are

quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive
- sum(Stack) is hard with a Queue as

the auxiliary structure

•We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 LEC 04: Stacks & Queues

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is
easier?
- Just looping over a queue and printing elements

CSE 122 LEC 04: Stacks & Queues

Common Stack & Queue Patterns
• Stack → Queue and Queue → Stack

- We give you helper methods for this on problems

•Reverse a Stack with a S→Q + Q→S

• “Cycling” a queue: Inspect each element by repeatedly removing and
adding to back size times
- Careful: Watch your loop bounds when queue’s size changes

•A ”splitting” loop that moves some values to the Stack and others to
the Queue

CSE 122 LEC 04: Stacks & Queues

See you Friday!

• Practice with Stacks & Queues in Section

• Challenge problem in lecture on Friday

• P1, released Friday, will use Stacks & Queues.

