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Stacks & Queues

Talk to your neighbors:
What are your favorite/least favorite 

classes at UW so far?

BEFORE WE START
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Lecture Outline
• Announcements

•Review: ADTs, Stacks & Queues

•Queue Manipulation

• Stack Manipulation

- Problem Solving
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Announcements

• Quiz 0
- Grades available in a couple days

- Retake info on Friday

• Creative Project (C0) due tomorrow

• Programming Assignment 1 (P1) will be released Friday
- It will be due next Thursday (4/20)
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(PCM) Abstract Data Types
• Abstract Data Type (ADT): A specification of a collection of data and 

the operations that can be performed on it.
- Describes what a collection does, not how it does it

•We don't know exactly how a stack or queue is implemented, and we 
don't need to.
- Only need to understand high-level idea of what a collection does and its 

operations

- Stack: retrieves elements in reverse order as added. 
Operations: push, pop, peek, …

- Queue: retrieves elements in same order as added. 
Operations: add, remove, peek, …
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(PCM) Abstract Data Types
more

abstract

more
specific

ADT

Interface

Implementation

Examples: queue, stack, list

Examples: Queue<>, List<>

Examples: ArrayList, 
LinkedList, array, 
Stack

Language specific

Language agnostic
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🎉 NEW DATA STRUCTURE DAY!! 🎉

Stack

Queue
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Stack - What is it good for?

What is it?

● A Last-in-First-out (LIFO) data structure

○ Elements are removed in the reverse order to how they were added

● All elements must be of same type*

● Dynamically sized

What is Stack particularly good at?

● push - add element to top

● pop - remove element from top

● Supported operations are few but very efficient
stack

top 3
2

bottom 1

pop, peekpush
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(PCM) Stacks

push

bottom

top

pop
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Stacks in Computer Science
•Programming languages and compilers:

- method calls are placed onto a stack (call=push, return=pop)
- compilers use stacks to evaluate expressions

•Matching up related pairs of things:
- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations
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(PCM) Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c");             // bottom ["a", "b", "c"] top
System.out.println(s.pop()); // "c"

- Stack has other methods that we will ask you not to use

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements
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Queue - What is it good for?

What is it?

● A First-in-First-out (FIFO) data structure

○ Elements are removed in the same order to how they were added

● All elements must be of same type*

● Dynamically sized

What is Queue particularly good at?

● add - add element to back

● remove - remove element from front

● Supported operations are few but very efficient
queue

front back

1 2 3
addremove, peek
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(PCM) Queue

add

remove

front back
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Queues in Computer Science
•Operating systems:

- queue of print jobs to send to the printer
- queue of programs / processes to be run
- queue of network data packets to send

•Programming:
- modeling a line of customers or clients
- storing a queue of computations to be performed in order

•Real world examples:
- people on an escalator or waiting in a line
- cars at a gas station (or on an assembly line)



CSE 122 LEC 04: Stacks & Queues

(PCM) Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17);       // front [42, -3, 17] back

System.out.println(q.remove());   // 42

- IMPORTANT: When constructing a queue you must use a new LinkedList 
object instead of a new Queue object.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements
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sli.do      #cse122Practice : Think

What is the return of this method?
// numbers: top [5, 4, 3, 2, 1] bottom
public static int sum(Stack<Integer> numbers) {
    Queue<Integer> q = new LinkedList<>();
    
    int total = 0;
    for (int i = 0; i < numbers.size(); i++) {
        int number = numbers.pop();
        total += number;
        
        q.add(number);
    }
    
    // Still need to move back to the stack!
    return total;
}

A)  0
B)  1
C)  5
D)  12
E)  15
F) Throws an error
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sli.do      #cse122Practice : Pair

What is the return of this method?
// numbers: top [5, 4, 3, 2, 1] bottom
public static int sum(Stack<Integer> numbers) {
    Queue<Integer> q = new LinkedList<>();
    
    int total = 0;
    for (int i = 0; i < numbers.size(); i++) {
        int number = numbers.pop();
        total += number;
        
        q.add(number);
    }
    
    // Still need to move back to the stack!
    return total;
}

A)  0
B)  1
C)  5
D)  12
E)  15
F) Throws an error
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Stack Sum bug
// numbers: top [5, 4, 3, 2, 1] bottom
public static int sum(Stack<Integer> numbers) {
    Queue<Integer> q = new LinkedList<>();
    
    int total = 0;
    for (int i = 0; i < numbers.size(); i++) {
        int number = numbers.pop();
        total += number;
        
        q.add(number);
    }
    
    // Still need to move back to the stack!
    return total;
}

Loop Table

i total numbers numbers.size()

0 5 [4, 3, 2, 1]

41 9 [3, 2, 1]

2 312 [2, 1]

3 2Exit the loop!!
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Problem Solving
•On their own, Stacks & Queues are

quite simple with practice
(few methods, simple model)

• Some of the problems we ask are
complex because the tools you have
to solve them are restrictive
- sum(Stack) is hard with a Queue as

the auxiliary structure

•We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance 
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Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!

• Brainstorming – Consider steps to solve problem before writing code
- Try to do an example “by hand” → outline steps 

• Solve Sub-Problems – Is there a smaller part of the problem to solve?
- Move to queue first

• Debugging – Does your solution behave correctly on the example input.
- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is 
easier?
- Just looping over a queue and printing elements
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Common Stack & Queue Patterns
• Stack → Queue and Queue → Stack

- We give you helper methods for this on problems

•Reverse a Stack with a S→Q + Q→S 

• “Cycling” a queue: Inspect each element by repeatedly removing and 
adding to back size times
-  Careful: Watch your loop bounds when queue’s size changes

•A ”splitting” loop that moves some values to the Stack and others to 
the Queue
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See you Friday!

• Practice with Stacks & Queues in Section

• Challenge problem in lecture on Friday

• P1, released Friday, will use Stacks & Queues.


