
CSE 122 Winter 2023LEC 16: JUnit Testing

CSE 122
LEC 16

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructors

TAs

Tristan Huber & Hunter Schafer
Ambika
Andrew
Audrey
Autumn
Ayush
Ben
Colton
Di
Eesha
Elizabeth

Evelyn
Jacob
Jaylyn
Jin
Joe
Kevin
Leon
Megana
Melissa
Mia

Poojitha
Rishi
Rucha
Shivani
Shreya
Steven
Suhani
Yijia
Ziao

JUnit Testing

Talk to your neighbors:

Favorite place to sit on campus?

BEFORE WE START

CSE 122 Winter 2023LEC 16: JUnit Testing

Lecture Outline
•Announcements

• Importance of Testing

• JUnit

•Example: Tic Tac Toe

CSE 122 Winter 2023LEC 16: JUnit Testing

Announcements

• Reminder: Final Exam, Wed 6/6 @ 2:30 – 4:20 pm
- In person, on paper

- Review in section!

- Review Lecture: Next Wednesday

- Review session: exact timing tbd

• Programming Assignment 3 due Thursday (5/25)

• Creative Project 3 released Friday (5/26)
- Last one!!!!!

CSE 122 Winter 2023LEC 16: JUnit Testing

Lecture Outline
•Announcements

• Importance of Testing

• JUnit

•Example: Tic Tac Toe

CSE 122 Winter 2023LEC 16: JUnit Testing

(PCM) Importance of Testing

Software, written by people, controls
more and more of our day-to-day lives.

Bugs (just like the ones we all write) are
just as easy to write in this software.

Stakes can be quite high so bugs
can have catastrophic effects

Source: Hackaday

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

CSE 122 Winter 2023LEC 16: JUnit Testing

sli.do #cse122Practice : Pair

Bugs you’ve experienced

Can you think of a bug(s) you’ve experienced or heard of
that have had serious effects?

If you can’t, can you think of any absurd bugs you’ve
seen?

CSE 122 Winter 2023LEC 16: JUnit Testing

Lecture Outline
•Announcements

• Importance of Testing

• JUnit

•Example: Tic Tac Toe

CSE 122 Winter 2023LEC 16: JUnit Testing

JUnit Basics
•import statements to give you access to JUnit method annotations

and assertion methods!

•Method Annotations
- @Test
- @DisplayName
-…

•Assertion Methods
- assertEquals(expected, actual)
- assertTrue(boolean)
- assertFalse(boolean)
-…

CSE 122 Winter 2023LEC 16: JUnit Testing

JUnit Testing
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;
import java.util.*;

public class ArrayListTest {
 @Test
 public void testAddAndGet() {
 List<String> list = new ArrayList<>();
 list.add("Hunter Schafer");
 list.add("Miya Natsuhara");
 list.add("CSE 122");

 assertEquals("Hunter Schafer", list.get(0));
 assertEquals("Miya Natsuhara", list.get(1));
 assertEquals("CSE 122", list.get(2));

 assertTrue(list.size() == 3);
 }
}

put object into some expected state

Use assert statements to check if
observed state is what we expect

CSE 122 Winter 2023LEC 16: JUnit Testing

Using JUnit

• Each @test method should be independent

- ie. set up its own state, make all relevant assertions

• An @test fails if any assert statement fails

• JUnit executes @test methods in an arbitrary order

CSE 122 Winter 2023LEC 16: JUnit Testing

Using JUnit - Tips

• one @test method per distinct case (i.e., empty case, one

element, even, odd, some edge case, …)

• Good coding practices still apply
- Eg. you can write helper methods in your test file

CSE 122 Winter 2023LEC 16: JUnit Testing

Lecture Outline

• Announcements

• Importance of Testing

• JUnit

• JExample: Tic Tac Toe

CSE 122 Winter 2023LEC 16: JUnit Testing

sli.do #cse122Practice : Pair

What test cases can you think of for the TicTacToe
spec?

CSE 122 Winter 2023LEC 16: JUnit Testing

Closed or open box tests?

Closed box testing - write tests based on a specification

independent of any implementation.

Open box testing - write tests for a particular implementation.

Test Driven Development - write tests before the

implementation

CSE 122 Winter 2023LEC 16: JUnit Testing

Bonus Topic: Floating Point Numbers
•Another name for doubles are floating point numbers

• Floating point numbers are nice, but imprecise
- Computers can only store a certain amount of precision (can’t store

0.3333333333 repeating forever)
- Finite precision can lead to slightly incorrect calculations with floating point

numbers

•Take-away: Essentially can never rely on == for doubles. Instead, must
define some notion of how far away they can be to be tolerated as
the same
- JUnit: assertEquals(expected, actual, delta)

