CSE 122 Sample Final Final
Winter 2023

Name of Student:

Section (e.g., AA): Student Number:

The exam is divided into six questions with the following points:

Problem Area

1 Conceptual

2 Code Tracing

3 Debugging

4 Collections Programming

5 Objects Programming

6 Stacks/Queues Programming

Do not begin work on this exam until instructed to do so. Any student who starts early or
who continues to work after time is called will receive U’s on some problems as a penalty.

You are allowed one page of a reference sheet, front and back, as notes during the exam.
Space is provided for your answers. There is also a reference sheet at the end that you
should use. You are not allowed to access any other papers during the exam. You are NOT to
use any electronic devices while taking the test, including calculators. Anyone caught using
an electronic device will receive U’s on some problems as a penalty.

The exam is not, in general, graded on code quality and you do not need to include comments.
For the stack/queue and collections questions, however, you are expected to use generics
properly and to declare variables using interfaces when possible. You may only use the
methods on the cheat sheet for the data structures listed. For objects programming, you
should declare all fields to be private. Problems may specify more specific requirements.
You are not allowed to use programming constructs we haven’t discussed in class such as
break, continue, or returns from a void method on this exam.

Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

You are allowed to ask for scratch paper to use as additional space when writing answers,
but you must indicate on the original page for the problem that part of the solution is on
scratch paper. Failure to do so may result in your work on scratch paper not being graded.

If you finish the exam early, please hand your exam to the instructor and exit quietly
through the front door. During the last 5 minutes of the exam, please stay in your seats to
avoid disrupting others during the end of the exam.

FEach problem is graded on an E/S/N scale. In general, to earn an E on a problem your
solution must work without error and meet all the problem requirements. To earn an S, there
is allowance for minor errors in the solution, but the problem requirements must still be
met to earn an S. Unless specified by the problem, we do not grade on code quality.

Initial here to indicate you have read and agreed to these rules:

1. Conceptual: Each of these parts should be considered independent of the others

Part A: Consider the following code snippet.

The following sub-parts will ask how many

references to objects and how many objects exist in this program.

Set<Double> s new HashSet<>();

Set<Double> s2 = s;
s.add (2.0);
s.add (-8.2);
Set<Double> s3 = s;

Set<Double> s4
s2.add(-3.8);
Set<Double> sb
s4 = s;

new HashSet<>();

Sy

Part A-1: How many objects exist in this program? Write your answer in the box below.

Part A-2: How many references to objects exist in this program? Write in the box below

Part B: Consider the following method. For each of the following commented Points,

the table for which conditions are always true

(under any circumstance),

fill in
only sometimes

true, or never true at each comment. You can abbreviate A=always, S=sometimes and N=never.
i i i st< > 11 i ,
pu?llc void mystery(List<Integer> list, int num) { An explanation for
int count = 0; Foint A's example answars
// Point A
list.contains (num): S
if (list.isEmpty()) { True for mystery([l,2,3]1, 3) and
throw new IllegalArgumentException(); false for mystery{[l,2,3], 4).
} Therefore sometimes true.
// Point B
list.=size() > 0: 8
Can be given an empty list Aar
for (int i = 0; i < list.size(); i++) { SrEE GRVERL A SHphY sk oL
i)) non—-empty list., Therefore
if (list.get(i) == num) { sometimes true.
// Point C
count > 0: N
list.set (i, list.get (i) + 1); Initialized to 0 and is not
// Point D modified at Point A. Never
greater than 0 here.
count++;
}
}
// Point E
return count;
}
Point A Point B Point C Point D Point E
list.contains (num) S
list.size() > O S
count > O N

Part C: (Select one option) Consider the following method. Which of the following options is
the best "plain-English" explanation of what the code is doing? We use TreeSet here as the
parameter because we require the parameter values to be sorted for this problem.

public List<String> method (TreeSet<String> s) {
Iterator iter = s.iterator();
List<String> 1 = new ArrayList<>();
while (iter.hasNext()) {
String str = iter.next();
if (str.contains(" ")) {
1.add (0, str);
iter.remove () ;

<:> Copies all multiword strings to 1 in reverse alphabetical order.

<:> Using an iterator, goes through the TreeSet and checks whether each element contains

a character and adds it to a List<String> if that is true.

<:> It produces a ConcurrentModificationException because the set is being modified
while being iterated over.

<:> Moves all multiword strings from s to a returned list in reverse alphabetical order.

2. Code Tracing: Write the output that is printed when the given method below is passed
each of the following maps as its parameter. We use TreeMap here as the parameter because we
require the parameter values to be sorted for this problem. Your answer should display the
right values in the right order.

public static void mystery (TreeMap<Integer, List<Double>> m) {
for (int 1 = 0; 1 < 3; i++) {
if (m.containsKey(i)) {
List<Double> s = m.get(i);
m.put (s.size (), s);
s.add(i * 1.5);
}
}
System.out.println(m) ;

}
For each call below, indicate what output is produced:

Method Call Output Produced

{1=09.01}

{0=[0.0, 1.0, 2.0], 3=[3.01, 4=[1}

{1=[3.3, 2.5], 2=[0.0]}

{0=[3.3, -0.7], 1=[3.1, 3.99], 2=[4.3, 1.9]1}

3. Debugging: Consider the following buggy implementation of bottomLeftSum.

The intended behavior of this method is to take a 2D array of numbers, and return the sum of
all the "bottom left" values in the 2D array. The bottom left values are the ones that are
to the left of the line drawn from the diagonal going from left to right. Two method calls
are shown as an example of what "bottom left" means (values highlighted as bold). You can
assume that the 2D array has a non-zero number of rows and columns.

Example 1: Should return 66 Example 2: Should return 18
(1, 2, 3, 41, (1, 2, 3, 4, 51,
(2, 3, 4, 51, (2, 3, 4, 5, 6],
[3I 4/ 5’ 6]/ [3’ 4/ 5’ 6I 7]]
(4, 5, 6, 7],
(5, 6, 7, 8]]
1. public int bottomLeftSum(int[][] nums) {
2. int sum = 0;
3. for (int 1 = 0; i < nums.length; i++) {
4. for (int 7 = 0; j < nums[i].length; j++) {
5. if (1 < 3) |
6. sum += nums([i] [J];
7. }
8. }
9. }
10. }

There is a single bug in this program that is your task to find and fix. As a hint, when
running the code on the Example 1, it returns 24 instead of the expected 66.

Part A: Identify the 1 Iine of code that causes the bug. Write your answer as a number in
the box to the right.

Part A Answer

Part B: Fix the error in the method above. Since there is only one bug, this should not take
a lot of code to fix. Specifically mention which line(s) you will change and how. If you are
deleting some code, make sure it’s clear what parts are being removed. If you are inserting
new code, make sure it is unambiguous where this new code belongs. Mention specific line
number (s) . Write your answer for Part B in the box below.

4. Collections Programming: Write a method called commonHobbies that takes a map with keys
that are TA names and values that are a list of favorite hobbies for that TA and that
returns a new map that associates each hobby name with a list of TAs who share that hobby.
TA names and hobby names are represented by strings.

For example, suppose a map called tas contains the following associations:

{Hitesh=[coding, hiking], Sara=[coding, hiking, reading],
Sravani=[coding, reading, biking]}

The call commonHobbies (tas) should return a new map with the following associations:

{biking=[Sravani], coding=[Hitesh, Sara, Sravani], hiking=[Hitesh, Saral,
reading=[Sara, Sravani]}

As in this example, the keys of the map returned by your method should appear in
alphabetical order. The TA names can appear in any order in the lists that the method
constructs. Your method should construct the new map and each of the lists contained in the
map and can construct iterators but should otherwise not construct any other structured
objects (no extra sets, lists, etc.). It should also not modify the map passed as a
parameter and it should be reasonably efficient. You should use interface types and generics
appropriately.

5. Objects Programming: Consider the following IceCream interface used by Molly Moons (a
local ice cream shop). For this problem, write a class called IceCreamCone that implements
the IceCream interface to implement the required methods. The IceCreamCone class should have
a constructor that takes no arguments and sets up the necessary state.

// Represents an ice cream order that can contain various scoops of different flavors.
public interface IceCream {

// Adds the given flavor of ice cream with the given quantity of scoops.

// The same flavor can be added multiple times, which should increase that

// flavor’s scoop count. If the given number of scoops is non-positive,

// this method throws an IllegalArgumentException.

public void add(String flavor, int scoops);

// Returns the number of scoops of the given flavor in this IceCream (0 if no scoops
// the given flavor have been added))
public int getFlavor (String flavor);

// Returns the set of flavors in this IceCream (in no particular order)
public Set<String> getFlavors();

// Returns a string representation of this IceCream.
// If there are no scoops of ice cream in IceCream, it returns

// "No ice cream : ("
// If scoops have been added, it will return a string
// "<scoops> scoops of ice cream with <flavors>"

public String toString();

// Returns true if the given IceCream contains the same set of flavors

// as the other. They do not need to have the same number of scoops of each
// flavor to have the same flavors.

public boolean sameFlavors (IceCream other);

For example, if the following lines are executed:
IceCream order0 = new IceCreamCone () ;
IceCream orderl = new IceCreamCone () ;
orderl.add ("vanilla", 1);
orderl.add ("chocolate", 2);
orderl.add (“vanilla”, 2);

Then the following calls to toString would return:

order0.toString() ; "No ice cream : ("
orderl.toString() ; "5 scoops of ice cream with [chocolate, vanillal"

In the description of the toString above, you should not include the < and > characters in
the returned value as those are placeholders for the real value. The order of the flavors in
the toString representation does not matter.

Your implementation of IceCreamCone should implement the IceCream interface. In terms of

Code Quality, the IceCreamCone should have private fields and should implement all of the
method behaviors as described above.

Write your solution on the next page.

6. Stacks/Queues Programming: Write a method named separate that accepts a queue of

Strings as a parameter and that rearranges the values by their length. We will assume
all of the Strings in the queue are length 1, 2, or 3. The queue should be rearranged
so that the strings of length 1 appear first, followed by values that are length 2,
followed by values that are length 3, otherwise preserving their relative order in
the original queue.

For example, suppose a queue called g stored the following sequence of values:
front ["Cat", "tO", Hcll, "dog", "rat", "b", nam, ||a", lldll, "hat", "run", llofll] back

After the call separate(qg), the queue should store the following sequence values
(groups underlined for clarity):

front ["C", "b", "a", "d", "tO", "am", "Of", "cat", "dog", "rat", "hat", "run"] back

Length 1 Length 2 Length 3

Notice that within the groups, the ordering is the same as the ordering of the original
queue.

You may assume that the queue passed to your method is not null and that it does not contain
any null values. You may assume all of the Strings in the queue are either length 1, 2, or
3. If the queue is empty, then no values should be added to the queue.

For an E, your solution must obey the following restrictions. A solution that disobeys them
may get an S, but it is not guaranteed.
* You may use one stack as auxiliary storage. You may not use other structures
(arrays, lists, etc.), but you can have as many simple variables as you like.
* Use the Queue interface and Stack/LinkedList classes discussed in class.
* Use stacks/queues in stack/queue-like ways only. Do not use index-based methods
such as get, search, or set, or for-each loops or iterators. You may call add,
remove, push, pop, peek, isEmpty, and size.
* Do not use advanced material such as recursion to solve the problem.

You have access to the following two methods and may call them as needed to help you
solve the problem:

public void s2g(Stack<String> s, Queue<String> q) {
while (!s.isEmpty()) {
g.add(s.pop());

}
public void g2s (Queue<String> g, Stack<String> s) {
while (!g.isEmpty()) {
s.push (g.remove ()) ;

You may use the rest of this page as scratch paper, but you should write your solution in
the box on the next page. If you need additional space, please indicate that your solution
is continued on scratch paper.

(You may use the rest of this page as scratch paper if necessary)

A A CSE 122 Final Exam Reference Sheet * 2

(DO NOT WRITE ANY WORK YOU WANTED GRADED ON THIS REFERENCE SHEET. IT WILL NOT BE GRADED)

Examples of Constructing Various Collections

List<Integer> list = new ArrayList<Integer>();

Queue<Double> queue = new LinkedList<Double> () ;

Stack<String> stack = new Stack<>(); // Diamond operator also permitted
Set<String> words = new HashSet<>();

Map<String, Integer> counts = new TreeMap<String, Integer>();

Methods Found in ALL collections (Lists, Stacks, Queues, Sets, Maps)

equals (collection)

Returns t rue if the given other collection contains the same elements

isEmpty () Returns true if the collection has no elements
size () Returns the number of elements in a collection
toString () Returns a string representation suchas " [10, -2, 43]"

Methods Found in both Lists and Sets (ArrayList, LinkedList, HashSet, TreeSet)

add (value)

Adds value to collection (appends at end of list)

addall (collection)

Adds all the values in the given collection to this one

contains (value)

Returns true if the given value is found somewhere in this collection

iterator ()

Returns an Iterator object to traverse the collection's elements

clear ()

Removes all elements of the collection

remove (value)

Finds and removes the given value from this collection

removeAll (collection)

Removes any elements found in the given collection from this one

retainAll (collection)

Removes any elements not found in the given collection from this one

List<Type> Methods

add (index, value)

Inserts given value at given index, shifting subsequent values right

indexOf (value)

Returns first index where given value is found in list (-1 if not found)

get (index)

Returns the value at given index

lastIndexOf (value)

Returns last index where given value is found in list (-1 if not found)

remove (index)

Removes/returns value at given index, shifting subsequent values left

set (index, value)

Replaces value at given index with given value

Stack<Type> Methods (only allowed methods plus size and isEmpty)

pop () Removes the top value from the stack and returns it;
pop throw an EmptyStackException if the stack is empty
push (value) Places the given value on top of the stack
peek () Returns the value at the top from the stack without removing it;
throws a EmptyStackException if the stack is empty
Queue<Type> Methods (only allowed methods plus size and isEmpty)
add (value) Places the given value at the back of the queue
remove () Removes the value from the front of the queue and returns it;
throws a NoSuchElementException if the queue is empty
peek () Returns the value at the front of the queue without removing it;
throws a NoSuchElementException if the queue is empty

Map<KeyType, ValueType> Methods

containsKey(key)

true if the map contains a mapping for the given key

get (key)

The value mapped to the given key (null if none)

keySet ()

Returns a Set of all keys in the map

put (key, value)

Adds a mapping from the given key to the given value

putAll (Map)

Adds all key/value pairs from the given map to this map

remove(kEY)

Removes any existing mapping for the given key

toString () Returns a string such as "{a=90, d=60, c=70}"
values () Returns a Collection ofall values in the map
Iterator<Type> Methods
hasNext () | Returns true if there is another element in the iterator
next () Returns the next value in the iterator and progresses the iterator forward one element
remove () | Removes the previous value returned by the next. Can only call once after each call to next ()
string Methods
charAt (i) The character in this String at a given index

contains (str)

true if this String contains the other's characters inside it

endsWith (str)

true if this String ends with the other's characters

equals (str)

true if this String is the same as str

equalsIgnoreCase (Str)

true if this String is the same as str, ignoring capitalization

indexOf (str)

First index in this String where given String begins (-1 if not found)

lastIndexOf (str)

Last index in this String where given String begins (-1 if not found)

length ()

Number of characters in this String

isEmpty ()

true if this String is the empty string

startsWith (str)

true if this String begins with the other's characters

substring (i, j) Characters in this String from index i (inclusive) to j (exclusive)
substring (i) Characters in this String from index 7 (inclusive) to the end
toLowerCase (), toUpperCase () | A new String with all lowercase or uppercase letters
Math Methods
abs (x) Returns the absolute value of x
max (x, y) Returns the larger of x and y
min(x, y) Returns the smaller of x and y
pow (x, ¥) Returns the value of x to the y power
random () Returns a random number between 0.0 and 1.0
round (x)

Returns x rounded to the nearest integer

Object/Interface Syntax

public class Example implements InterfaceExample {

private type field;

public Example () {
field = something;

}

public void method() {
// do something

}

public interface InterfaceExample {
public void method() ;
}

