
CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

CSE 122
L E C 0 9

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructor

TAs Abigail
Autumn
Claire
Jacob
Kevin
Mia
Rucha
Shreya

Ambika
Ayush
Colin
Jasmine
Kyle
Poojitha
Saivi
Smriti

Arthur
Chaafen
Elizabeth
Jaylyn
Marcus
Rishi
Shananda
Steven

Atharva
Chloë
Helena
Kavya
Megana
Rohini
Shivani
Zane

Elba Garza

Nested Collections

Talk to your neighbors:
What’s your favorite holiday, and

why?
(Mine is Diada de Saint Jordi, so cool.)

BEFORE WE START

Music: Las Babys - Aitana

https://en.wikipedia.org/wiki/The_Day_of_Books_and_Roses

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Agenda
• Announcements

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

• Images Debrief

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Announcements
• Programming Assignment 2 (P2) will be out later today!

- Seriously, start early! This assignment is much more involved…
- Due November 9th by 11:59 PM

• Quiz 1 on October 31st 🎃
- Topics: Reference Semantics, Stacks and Queues, 2D Arrays, Sets

• Resubmission Cycle 2 (R2) form out, due October 31st by 11:59 PM

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Agenda
• Announcements

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

• Images Debrief

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Map ADT
• Data structure to map keys to values

- Keys can be any* type; Keys must be unique
- Values can be any type

• Example: Mapping nucleotides to counts
 in P0!
• Operations

- put(key, value): Associate key to value
- Overwrites duplicate keys

- get(key): Get value for key
- remove(key): Remove key/value pair

Same as Python’s dict

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

mostFrequentStart
Write a method called mostFrequentStart that takes a Set of words and
does the following steps:
• Organizes words into “word families” based on which letter they start

with
• Selects the largest “word family” as defined as the family with the

most words in it
• Returns the starting letter of the largest word family (and if time,

should update the Set of words to only have words from the selected
family).

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

mostFrequentStart
For example, if the Set words stored the values
["hello", "goodbye", "library", "literary", "little", "repel"]

The word families produced would be
'h' -> 1 word ("hello")
'g' -> 1 word ("goodbye")
'l' -> 3 words ("library", "literary", "little")
'r' -> 1 word ("repel")

Since 'l' has the largest word family, we return 3 and modify the Set to
only contain Strings starting with 'l'.

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Agenda
• Announcements

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

• Images Debrief

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Nested Collections
• The values inside a Map can be any

type, including data structures
• Common examples:

- Mapping: Section ➔ Set of students in
that section

- Mapping: Recipe ➔ Set of ingredients in
that recipe

- Or even Map<String, Map<String, Double>>
for units!

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Updating Nested Collections
The “value” inside the Map is a reference
to the data structure!

- Think carefully about number of references
to a particular object

courses.put("CSE 123", new HashSet<String>());
courses.get("CSE 123").add("Kasey");

Set<String> cse123 = courses.get("CSE 123");
cse123.add("Brett");

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

sli.do #cse122Practice : Think
Suppose map had the following state. What
would its state be after running this code?
map: {”KeyA"=[1, 2], ”KeyB"=[3], ”KeyC"=[4, 5, 6]}

Set<Integer> nums = map.get("KeyA");
nums.add(7);
map.put("KeyB", nums);
map.get("KeyA").add(8);
map.get("KeyB").add(9);

A.{"KeyA"=[1, 2], "KeyB"=[1, 2, 7], "KeyC"=[4, 5, 6]}
B.{"KeyA"=[1, 2, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}
C.{"KeyA"=[1, 2, 7, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}
D.{"KeyA"=[1, 2, 7, 8, 9], "KeyB"=[1, 2, 7, 8, 9], "KeyC"=[4, 5, 6]}

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

sli.do #cse122Practice : Pair
Suppose map had the following state. What
would its state be after running this code?
map: {”KeyA"=[1, 2], ”KeyB"=[3], ”KeyC"=[4, 5, 6]}

Set<Integer> nums = map.get("KeyA");
nums.add(7);
map.put("KeyB", nums);
map.get("KeyA").add(8);
map.get("KeyB").add(9);

A.{"KeyA"=[1, 2], "KeyB"=[1, 2, 7], "KeyC"=[4, 5, 6]}
B.{"KeyA"=[1, 2, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}
C.{"KeyA"=[1, 2, 7, 8], "KeyB"=[1, 2, 7, 9], "KeyC"=[4, 5, 6]}
D.{"KeyA"=[1, 2, 7, 8, 9], "KeyB"=[1, 2, 7, 8, 9], "KeyC"=[4, 5, 6]}

A:
num

s →

B:

C:

[1, 2]

[3]

[4, 5, 6]

[1, 2, 7]

nums

[1, 2, 7, 8][1, 2, 7, 8, 9]

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Agenda
• Announcements

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

• Images Debrief

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Background: Search Engines
• A search engine receives a query and returns a set of relevant

documents. Examples: Google.com, Mac Finder, more.
- Queries often can have more

• A search engine involves two main components
- An index to efficiently find the set of documents for a query

- Will focus on “single word queries” for today’s example
- A ranking algorithm to order the documents from most to least relevant

- Not the focus of this example

• Goal: Precompute a data structure that helps find the relevant
documents for a given query

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Inverted Index
• An inverted index is a Mapping from possible query words to the set

of documents that contain that word
- Answers the question:

“What documents contain
the word ‘corgis’?”

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

(Optional) Ranking Results
• There is no one right way to define which documents are “most relevant”

There are approximations, but make decisions about what relevance
means
• Idea 1: Documents that have more hits of the query should come first

- Pro: Simple
- Con: Favors longer documents (query: “the dogs” will favor long documents with lots

of “the”s)

• Idea 2: Weight query terms based on their “uniqueness”. Often use some
sort of score for “Term Frequency – Inverse Document Frequency (TF-IDF)

- Pro: Doesn’t put much weight on common words like “the”
- Cons: Complex, many choices in how to compute that yield pretty different rankings

• Idea 3: Much more! Most companies keep their ranking algorithms very
very secret J

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Agenda
• Announcements

• Review/Finish: mostFrequentStart

• Recap: Nested Collections

• Practice: Search Engine

• Images Debrief

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Data Bias
• Common Misconception: Models or Artificial Intelligence (AI) are

somehow “less biased” or “more objective” than humans. Not true.
• The programs we use operate on real-world data, and will often

reflect the biases that data contains
• Have to carefully consider the context and limitations of the data we

gather. If the data an algorithm is built on is vastly different than the
context in which it’s used, some pretty awful outcomes can happen

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

Data Bias

CSE 122 Autumn 2023LEC 09: Nested Collections sli.do #cse122

What to do?
• Obviously, ideal to have datasets that aren’t biased in the first place.

- But might not always be possible if we can’t fix the sources of the bias in the real
world...

• AI/Models aren’t “neutral” or “more objective”, they just quickly and
automatically codify the status quo (and perpetuate biases)

- Garbage in → Garbage out
• Lots of work going into how to de-bias models even if they are trained on

biased data. Active area of research!
- Key take-away: None of this comes “for free”, requires hard work to fight bias

• Ask ourselves:
- What biases might be present in my data?
- What assumptions might I be making about who is using my program?
- How can I write code to be more inclusive?
- What happens when (not if) mistakes happen? Who potentially benefits and who is

potentially harmed?

