
CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

CSE 122
L E C 0 5

Questions during Class?

Raise hand or send here

sli.do #cse122

Instructor

TAs Abigail
Autumn
Claire
Jacob
Kevin
Mia
Rucha
Shreya

Ambika
Ayush
Colin
Jasmine
Kyle
Poojitha
Saivi
Smriti

Arthur
Chaafen
Elizabeth
Jaylyn
Marcus
Rishi
Shananda
Steven

Atharva
Chloë
Helena
Kavya
Megana
Rohini
Shivani
Zane

Elba Garza

Stacks & Queues
Practice

Talk to your neighbors:
What’s your favorite animal? And

why?

BEFORE WE START

Music:

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Lecture Outline
• Announcements

• Quick Recap

• copyStack Review

• Structured Example: spliceStack

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Announcements
•Quiz 0

- Dropping Question 3 from quiz!
•P0 feedback was released yesterday (Thanks TAs!)

- Resubmission logistics posted soon
•P1 released today

- Due next Thursday, October 19th by 11:59 PM

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Lecture Outline
• Announcements

• Quick Recap

• copyStack Review

• Structured Example: spliceStack

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Stacks & Queues
• Some collections are constrained, only use optimized operations

- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added

queue

front back
1 2 3

addremove

stack

top 3
2

bottom 1

poppush

👀
 pe

ek

👀 peek

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17);

System.out.println(q.remove());

🚨 IMPORTANT: When constructing a queue you must use a new LinkedList object
instead of a new Queue object. (More on that with Interfaces.)

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is
empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue
isEmpty() returns true if queue has no elements

42-317

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c");
System.out.println(s.pop());

- Stack has other methods that we will ask you not to use 😬

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

"a"

"b"

"c"

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Fundamental Data Structures ➔ Problem Solving
• On their own, Stacks & Queues are

quite simple with practice
(few methods, simple model)
• Some of the problems we ask are

complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!
• Brainstorming – Consider steps to solve problem before writing code

- Try to do an example “by hand” → outline steps
• Solve Sub-Problems – Is there a smaller part of the problem to solve?

- Move to queue first
• Debugging – Does your solution behave correctly on the example input.

- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is
easier?

- Just looping over a queue and printing elements

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Metacognition
• Metacognition: asking questions about your solution process.

• Examples:
- While debugging: explain to yourself why you’re making this change to your

program.
- Before running your program: make an explicit prediction of what you expect to see.
- When coding: be aware when you’re not making progress, so you can take a break or

try a different strategy.
- When designing:

- Explain the tradeoffs with using a different data structure or algorithm.
- If one or more requirements change, how would the solution change as a result?
- Reflect on how you ruled out alternative ideas along the way to a solution.

- When studying: what is the relationship of this topic to other ideas in the course?

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Common Stack & Queue Patterns
• Stack → Queue and Queue → Stack

- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S
• “Cycling” a queue: Inspect each element by repeatedly removing and

adding to back size times
- Careful: Watch your loop bounds when queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to
the Queue

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Lecture Outline
• Announcements

• Quick Recap

• copyStack Review

• Structured Example: spliceStack

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

copyStack
Write a method copyStack that takes a stack of integers as a
parameter and returns a copy of the original stack (i.e., a new stack
with the same values as the original, stored in the same order as the
original).
Your method should create the new stack and fill it up with the same
values that are stored in the original stack. It is not acceptable to return
the same stack passed to the method; you must create, fill, and return
a new stack.

You may use one queue as auxiliary storage.

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

copyStack

1

2

3

s s2q

1 2 3

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

Lecture Outline
• Announcements

• Quick Recap

• copyStack Review

• Structured Example: spliceStack

CSE 122 Autumn 2023LEC 05: Stacks & Queues Practice

spliceStack
Write a method called spliceStack that takes as parameters a stack
of integers s, a start position i, and an ending position j, and that
removes a sequence of elements from s starting at the i’th element
from the bottom of the stack up to (but not including) the j’th element
from the bottom of the stack (where position 0 is the bottom of the
stack), returning these values in a new stack. The ordering of elements
in both stacks should be preserved.

stack

top
8 4
1 3
3 2
4 1

bottom 1 0

spliceStack(s, 1, 3)

s

top
3

bottom 4
New stack returned by

method

