
CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

CSE 122
Autumn 2022

L E C 0 5

Ajay
Andrew
Anson
Anthony
Audrey
Chloe
Colton
Connor
Elizabeth
Evelyn

Gaurav
Hilal
Hitesh
Jake
Jin
Joe
Joe
Karen
Kyler
Leon

Melissa
Noa
Parker
Poojitha
Samuel
Sara
Simon
Sravani
Tan
Vivek

Hunter Schafer / Miya NatsuharaInstructor

TAs

Questions during Class?

Raise hand or send here

sli.do #cse122

Stacks & Queues
Practice

Talk to your neighbors:
Debate: Are Pop-Tarts ravioli?

BEFORE WE START

Music: Hunter/Miya’s Playlist

https://open.spotify.com/playlist/31eOln0zVxrUEAg9eK8jrC?si=2dc7b7c1964b4a06

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

After Quiz 0
• We’ve heard your feedback about the first quiz. Thanks for sharing!
• As we’ve said many times, this is the first time offering the class and

we are still trying to figure out the best structures for everything!
Your feedback is very helpful in this!
• Have some planned changes to respond to feedback, but are going to

wait until we finish grading Quiz 0 before making any concrete
updates

- We will look carefully at the time expectation for future quizzes
- More clearly outline practice resources
- Remember that syllabus grade promises are minimum guarantees, we can

always be more lenient of certain assessments ended up being more difficult

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

Metacognition
• Metacognition: asking questions about your solution process.

• Examples:
- While debugging: explain to yourself why you’re making this change to your

program.
- Before running your program: make an explicit prediction of what you expect to see.
- When coding: be aware when you’re not making progress, so you can take a break or

try a different strategy.
- When designing:

- Explain the tradeoffs with using a different data structure or algorithm.
- If one or more requirements change, how would the solution change as a result?
- Reflect on how you ruled out alternative ideas along the way to a solution.

- When studying: what is the relationship of this topic to other ideas in the course?

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

Learning is an Iterative Process!
• Retake logistics coming soon after Quiz 0 Feedback is released

- Hopefully, Tuesday night / Wednesday morning
• Now that you know what to expect, you now have better ways you can

respond if you felt your performance on the quiz wasn’t what you wanted
• Here are some reflection questions

- How did your studying/practice help you on the quiz? What aspects can you
improve?

- How did your development process on coding problems help/hinder your ability to
complete the problem?

- How did you budget time while taking the quiz?
• Come work with us on any of these skills!

- The Ed Discussion board
- The IPL and Hunter/Miya’s Office Hours
- Academic Support Programs

https://academicsupport.uw.edu/

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

(Recap) Stacks & Queues
• Some collections are constrained, only use optimized operations

- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added

queue

front back
1 2 3

addremove, peek

stack

top 3
2

bottom 1

pop, peekpush

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

(Recap) Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c"); // bottom ["a", "b", "c"] top
System.out.println(s.pop()); // "c"

- Stack has other methods that we will ask you not to use

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

(Recap) Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back
System.out.println(q.remove()); // 42

- IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object.

- This has to do with a topic we'll discuss later called interfaces.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

(Recap) Problem Solving
• On their own, Stacks & Queues are

quite simple with practice
(few methods, simple model)
• Some of the problems we ask are

complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

(Recap) Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!
• Brainstorming – Consider steps to solve problem before writing code

- Try to do an example “by hand” → outline steps
• Solve Sub-Problems – Is there a smaller part of the problem to solve?

- Move to queue first
• Debugging – Does your solution behave correctly on the example input.

- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is
easier?

- Just looping over a queue and printing elements

CSE 122 Autumn 2022LEC 05: Stacks & Queues Practice sli.do #cse122

(Recap) Common Stack & Queue Patterns
• Stack → Queue and Queue → Stack

- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S
• “Cycling” a queue: Inspect each element by repeatedly removing and

adding to back size times
- Careful: Watch your loop bounds when queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to
the Queue

