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Questions during Class?

Raise hand or send here

sli.do #cse-122 

Stacks & Queues

Talk to your neighbors:
What are your favorite/least favorite 

classes at UW so far?

BEFORE WE START

Music: Hunter/Miya’s Playlist

https://open.spotify.com/playlist/31eOln0zVxrUEAg9eK8jrC?si=2dc7b7c1964b4a06
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Lecture Outline
• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation
- Problem Solving
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Announcements
• Quizzes

- Feedback released next week
- Okay if it didn’t go exactly as wanted, retakes and more quizzes
- Information about retakes will be posted after feedback

•Creative Project (C0) due tomorrow
• Feedback from A0 will be posted before C0 is due
• Programming Assignment 1 will be released Friday

- It will be due next Thursday (Oct 20)
• Only “new” logistics for a while are resubmissions and 

retakes
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(PCM) Stacks & Queues
• Some collections are constrained, only use optimized operations

- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added

queue

front back
1 2 3

addremove, peek

stack

top 3
2

bottom 1

pop, peekpush
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(PCM) Abstract Data Types
• Abstract Data Type (ADT): A specification of a collection of data and 

the operations that can be performed on it.
- Describes what a collection does, not how it does it

• We don't know exactly how a stack or queue is implemented, and we 
don't need to.

- Only need to understand high-level idea of what a collection does and its 
operations

- Stack: retrieves elements in reverse order as added. 
Operations: push, pop, peek, …

- Queue: retrieves elements in same order as added. 
Operations: add, remove, peek, …
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(PCM) Stacks
• Stack: A collection based on the principle of adding elements and 

retrieving them in the opposite order.
- Last-In, First-Out ("LIFO") 
- Elements are stored in order of insertion.

- We do not think of them as having indexes.
- Client can only add/remove/examine the last element added (the "top")

Basic Stack operations:
• push: Add an element to the top
• pop: Remove the top element
• peek: Examine the top element

push

bottom

top

pop
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Stacks in Computer Science
• Programming languages and compilers:

- method calls are placed onto a stack (call=push, return=pop)
- compilers use stacks to evaluate expressions

• Matching up related pairs of things:
- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations
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(PCM) Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c");             // bottom ["a", "b", "c"] top
System.out.println(s.pop()); // "c"

- Stack has other methods that we will ask you not to use

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements
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(PCM) Queue
• Queue: Retrieves elements in the order they were added.

- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only examine/remove

the front of the queue.

• Basic Queue operations:
- add (enqueue): Add an element to the back.
- remove (dequeue): Remove the front element.
- peek: Examine the front element.

add

remove

front back
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Queues in Computer Science
• Operating systems:

- queue of print jobs to send to the printer
- queue of programs / processes to be run
- queue of network data packets to send

• Programming:
- modeling a line of customers or clients
- storing a queue of computations to be performed in order

• Real world examples:
- people on an escalator or waiting in a line
- cars at a gas station (or on an assembly line)
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(PCM) Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17);       // front [42, -3, 17] back
System.out.println(q.remove());   // 42

- IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object.

- This has to do with a topic we'll discuss later called interfaces.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements
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sli.do #cse122Practice : Think

What is the return of this method?
public static int sum(Stack<Integer> numbers) {

int total = 0;

for (int i = 0; i < numbers.size(); i++) {}
int number = numbers.pop();
total += number;
numbers.push(number);

}
return total;

} 

A) 0
B) 1
C) 5
D) 6
E) 12
F) 15
G) 25
H) Throws an error
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sli.do #cse122Practice : Pair

What is the return of this method?
public static int sum(Stack<Integer> numbers) {

int total = 0;

for (int i = 0; i < numbers.size(); i++) {}
int number = numbers.pop();
total += number;
numbers.push(number);

}
return total;

} 

A) 0
B) 1
C) 5
D) 6
E) 12
F) 15
G) 25
H) Throws an error
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sli.do #cse122Practice : Think

What is the return of this method?
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {}

int number = numbers.pop();
total += number;

q.add(number);
}

// Still need to move back to the stack!
return total;

}

A) 0
B) 1
C) 5
D) 12
E) 15
F) Throws an error
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Problem Solving
• On their own, Stacks & Queues are

quite simple with practice
(few methods, simple model)
• Some of the problems we ask are

complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance 
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Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!
• Brainstorming – Consider steps to solve problem before writing code

- Try to do an example “by hand” → outline steps
• Solve Sub-Problems – Is there a smaller part of the problem to solve?

- Move to queue first
• Debugging – Does your solution behave correctly on the example input.

- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is 
easier?

- Just looping over a queue and printing elements
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Common Stack & Queue Patterns
• Stack → Queue and Queue → Stack

- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S 
• “Cycling” a queue: Inspect each element by repeatedly removing and 

adding to back size times
- Careful: Watch your loop bounds when queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to 
the Queue


