
CSE 122 Autumn 2022LEC 04: Stacks & Queues

CSE 122
L E C 0 4

Ajay
Andrew
Anson
Anthony
Audrey
Chloe
Colton
Connor
Elizabeth
Evelyn

Gaurav
Hilal
Hitesh
Jake
Jin
Joe
Joe
Karen
Kyler
Leon

Melissa
Noa
Parker
Poojitha
Samuel
Sara
Simon
Sravani
Tan
Vivek

Hunter Schafer / Miya NatsuharaInstructor

TAs

Questions during Class?

Raise hand or send here

sli.do #cse-122

Stacks & Queues

Talk to your neighbors:
What are your favorite/least favorite

classes at UW so far?

BEFORE WE START

Music: Hunter/Miya’s Playlist

https://open.spotify.com/playlist/31eOln0zVxrUEAg9eK8jrC?si=2dc7b7c1964b4a06

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation
- Problem Solving

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Announcements
• Quizzes

- Feedback released next week
- Okay if it didn’t go exactly as wanted, retakes and more quizzes
- Information about retakes will be posted after feedback

•Creative Project (C0) due tomorrow
• Feedback from A0 will be posted before C0 is due
• Programming Assignment 1 will be released Friday

- It will be due next Thursday (Oct 20)
• Only “new” logistics for a while are resubmissions and

retakes

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation
- Problem Solving

CSE 122 Autumn 2022LEC 04: Stacks & Queues

(PCM) Stacks & Queues
• Some collections are constrained, only use optimized operations

- Stack: retrieves elements in reverse order as added
- Queue: retrieves elements in same order as added

queue

front back
1 2 3

addremove, peek

stack

top 3
2

bottom 1

pop, peekpush

CSE 122 Autumn 2022LEC 04: Stacks & Queues

(PCM) Abstract Data Types
• Abstract Data Type (ADT): A specification of a collection of data and

the operations that can be performed on it.
- Describes what a collection does, not how it does it

• We don't know exactly how a stack or queue is implemented, and we
don't need to.

- Only need to understand high-level idea of what a collection does and its
operations

- Stack: retrieves elements in reverse order as added.
Operations: push, pop, peek, …

- Queue: retrieves elements in same order as added.
Operations: add, remove, peek, …

CSE 122 Autumn 2022LEC 04: Stacks & Queues

(PCM) Stacks
• Stack: A collection based on the principle of adding elements and

retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")
- Elements are stored in order of insertion.

- We do not think of them as having indexes.
- Client can only add/remove/examine the last element added (the "top")

Basic Stack operations:
• push: Add an element to the top
• pop: Remove the top element
• peek: Examine the top element

push

bottom

top

pop

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Stacks in Computer Science
• Programming languages and compilers:

- method calls are placed onto a stack (call=push, return=pop)
- compilers use stacks to evaluate expressions

• Matching up related pairs of things:
- find out whether a string is a palindrome
- examine a file to see if its braces { } match
- convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
- searching through a maze with "backtracking”
- many programs use an "undo stack" of previous operations

CSE 122 Autumn 2022LEC 04: Stacks & Queues

(PCM) Programming with Stacks

Stack<String> s = new Stack<String>();
s.push("a");
s.push("b");
s.push("c"); // bottom ["a", "b", "c"] top
System.out.println(s.pop()); // "c"

- Stack has other methods that we will ask you not to use

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

CSE 122 Autumn 2022LEC 04: Stacks & Queues

(PCM) Queue
• Queue: Retrieves elements in the order they were added.

- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only examine/remove

the front of the queue.

• Basic Queue operations:
- add (enqueue): Add an element to the back.
- remove (dequeue): Remove the front element.
- peek: Examine the front element.

add

remove

front back

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Queues in Computer Science
• Operating systems:

- queue of print jobs to send to the printer
- queue of programs / processes to be run
- queue of network data packets to send

• Programming:
- modeling a line of customers or clients
- storing a queue of computations to be performed in order

• Real world examples:
- people on an escalator or waiting in a line
- cars at a gas station (or on an assembly line)

CSE 122 Autumn 2022LEC 04: Stacks & Queues

(PCM) Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back
System.out.println(q.remove()); // 42

- IMPORTANT: When constructing a queue you must use a new LinkedList
object instead of a new Queue object.

- This has to do with a topic we'll discuss later called interfaces.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation
- Problem Solving

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation
- Problem Solving

CSE 122 Autumn 2022LEC 04: Stacks & Queues

sli.do #cse122Practice : Think

What is the return of this method?
public static int sum(Stack<Integer> numbers) {

int total = 0;

for (int i = 0; i < numbers.size(); i++) {}
int number = numbers.pop();
total += number;
numbers.push(number);

}
return total;

}

A) 0
B) 1
C) 5
D) 6
E) 12
F) 15
G) 25
H) Throws an error

CSE 122 Autumn 2022LEC 04: Stacks & Queues

sli.do #cse122Practice : Pair

What is the return of this method?
public static int sum(Stack<Integer> numbers) {

int total = 0;

for (int i = 0; i < numbers.size(); i++) {}
int number = numbers.pop();
total += number;
numbers.push(number);

}
return total;

}

A) 0
B) 1
C) 5
D) 6
E) 12
F) 15
G) 25
H) Throws an error

CSE 122 Autumn 2022LEC 04: Stacks & Queues

sli.do #cse122Practice : Think

What is the return of this method?
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {}

int number = numbers.pop();
total += number;

q.add(number);
}

// Still need to move back to the stack!
return total;

}

A) 0
B) 1
C) 5
D) 12
E) 15
F) Throws an error

CSE 122 Autumn 2022LEC 04: Stacks & Queues

sli.do #cse122Practice : Pair

What is the return of this method?
public static int sum(Stack<Integer> numbers) {

Queue<Integer> q = new LinkedList<>();

int total = 0;
for (int i = 0; i < numbers.size(); i++) {}

int number = numbers.pop();
total += number;

q.add(number);
}

// Still need to move back to the stack!
return total;

}

A) 0
B) 1
C) 5
D) 12
E) 15
F) Throws an error

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Lecture Outline
• Announcements

• Review: Stacks & Queues

• Queue Manipulation

• Stack Manipulation
- Problem Solving

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Problem Solving
• On their own, Stacks & Queues are

quite simple with practice
(few methods, simple model)
• Some of the problems we ask are

complex because the tools you have
to solve them are restrictive

- sum(Stack) is hard with a Queue as
the auxiliary structure

• We challenge you on purpose here
to practice problem solving

Source: Oleson, Ko (2016) - Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Common Problem-Solving Strategies
• Analogy – Is this similar to a problem you’ve seen?

- sum(Stack) is probably a lot like sum(Queue), start there!
• Brainstorming – Consider steps to solve problem before writing code

- Try to do an example “by hand” → outline steps
• Solve Sub-Problems – Is there a smaller part of the problem to solve?

- Move to queue first
• Debugging – Does your solution behave correctly on the example input.

- Test on input from specification
- Test edge cases (“What if the Stack is empty?”)

• Iterative Development – Can we start by solving a different problem that is
easier?

- Just looping over a queue and printing elements

CSE 122 Autumn 2022LEC 04: Stacks & Queues

Common Stack & Queue Patterns
• Stack → Queue and Queue → Stack

- We give you helper methods for this on problems

• Reverse a Stack with a S→Q + Q→S
• “Cycling” a queue: Inspect each element by repeatedly removing and

adding to back size times
- Careful: Watch your loop bounds when queue’s size changes

• A ”splitting” loop that moves some values to the Stack and others to
the Queue

