BEFORE WE START

Talk to your neighbors:

What are your weekend (or Weeknd) plans?

Music: 121 25wi lecture playlist 🍪

Instructor: Matt Wang

TAs:	Ailsa	Alice	Chloë	Christopher
	Ethan	Hanna	Hannah	Hibbah
	Janvi	Judy	Julia	Kelsey
	Lucas	Luke	Maitreyi	Merav
	Ruslana	Samrutha	Sam	Shayna
	Sushma	Vivian		

CSE 121

LEC 07

Methods, Parameters, Returns

Questions during Class?

Raise hand or send here

sli.do #cse121

a brief note on, *gestures wildly*

Wanted to acknowledge that:

- laws (and our interpretation of them) are changing rapidly
- there's a lot of uncertainty, and many questions don't have answers
- this can be <u>extraordinarily</u> stressful (and makes it hard to do 121!)

Materially,

- if this is affecting your ability to engage in CSE 121,
 please let me know I'm more than happy to chat
- I'm also happy to refer you to on-campus resources that are helpful

Announcements, Reminders

- P1 is out, due next Tuesday, Feb 4th
 - Start early this one is tough!
 - Doing P1 is *also* studying for the quiz
- R1 released yesterday, due Thursday Feb 6th
- Quiz 0 is on Thursday, February 6 (in your registered quiz section)
 can't make it? email Matt <u>ASAP</u>
- As you potentially rewatch lectures Ed megathreads reminder!
- No pre-class work for next Wed :)

Even more about Quiz 0...

Quiz 0 is Thursday, Feb 6th!

Please read the <u>policies & procedures</u>. You are responsible for following these rules!

General advice:

- do the practice quiz in an environment like an actual quiz: time yourself, only used allowed resources, etc.
- organize your notes open book *doesn't* mean "no notes required"!
- get some sleep you won't do well with no sleep (or food)

On "studying deliberately"

Biggest advice: **study deliberately**; as a sketch,

- catch up to methods & parameters
- then, do the first practice quiz
- **reflect**: what went well, what topics were shaky?
- **review those topics** (with practice problems, office hours, ...)
- then, do the second practice quiz do you see the same problems?

Targeted, deliberate practice gives you a better return!

New: Class Constants

A fixed value visible (in-scope) to the whole program (the entire *class*).

Value is set at declaration, cannot be reassigned – value is constant.

public static final type NAME_OF_CONSTANT = expression;

Practice: Think

sli.do #cse121

```
public static final int COUNT = 7;
```

```
public static void main(String[] args) {
    int count = 5;
    line(count);
    System.out.println("count is: " + count);
}
```

```
public static void line(int count) {
  for (int i = 1; i <= count; i++) {
    System.out.print("*");
  }
  count++;
  System.out.println();</pre>
```

What will be the **last line of output** from this code?

- A.count is: 1
- B. count is: 5
- C.count is: 6

```
D.count is: 7
```


sli.do #cse121

```
public static final int COUNT = 7;
```

```
public static void main(String[] args) {
    int count = 5;
    line(count);
    System.out.println("count is: " + count);
}
```

```
public static void line(int count) {
  for (int i = 1; i <= count; i++) {
    System.out.print("*");
  }
  count++;
  System.out.println();</pre>
```

What will be the **last line of output** from this code?

A.count is: 1

```
B. count is: 5
```

C.count is: 6

```
D.count is: 7
```

Walkthrough: Counting Counts

PCM: Returns

Calling a method that returns a value... </p

Recall: Math

Method	Description
Math.abs(value)	Returns the absolute value of value
Math.ceil(<i>value</i>)	Returns value rounded up
Math.floor(value)	Returns value rounded down
<pre>Math.max(value1, value2)</pre>	Returns the larger of the two values
<pre>Math.min(value1, value2)</pre>	Returns the smaller of the two values
Math.round(value)	Returns value rounded to the nearest whole number* note: need to cast result to int (it's complicated!)
Math.sqrt(value)	Returns the square root of value
<pre>Math.pow(base, exp)</pre>	Returns base raised to the exp power

Recall: String Methods

Method	Description
length()	Returns the length of the string.
charAt(i)	Returns the character at index <i>i</i> of the string
<pre>indexOf(s)</pre>	Returns the index of the first occurrence of <i>s</i> in the string; returns - 1 if <i>s</i> doesn't appear in the string
<pre>substring(i, j) or substring(i)</pre>	Returns the characters in this string from <i>i</i> (inclusive) to <i>j</i> (exclusive); if <i>j</i> is omitted, goes until the end of the string
<pre>contains(s)</pre>	Returns whether or not the string contains s
equals(s)	Returns whether or not the string is equal to s (case-sensitive)
<pre>equalsIgnoreCase(s)</pre>	Returns whether or not the string is equal to s ignoring case
toUpperCase()	Returns an uppercase version of the string
toLowerCase()	Returns a lowercase version of the string

Reminder: Gumball & Strings

Β.

Practice: Think

sli.do #cse121

To go from Celsius to Fahrenheit, you multiply by 1.8 and then add 32.

Which of these correctly implements this logic as a method?

```
public static void celsiusToF(double celsius) {
    double fahrenheit = celsius * 1.8 + 32;
    return fahrenheit;
    }
```

```
public static void celsiusToF(double celsius) {
   double fahrenheit = celsius * 1.8 + 32;
}
```

```
public static double celsiusToF(double celsius) {
    int fahrenheit = celsius * 1.8 + 32;
    return fahrenheit;
}
```

public static double celsiusToF(double celsius) {
 return celsius * 1.8 + 32;

Β.

sli.do #cse121

To go from Celsius to Fahrenheit, you multiply by 1.8 and then add 32.

Which of these correctly implements this logic as a method?

public static void celsiusToF(double celsius) {
 double fahrenheit = celsius * 1.8 + 32;
 return fahrenheit;
 }

```
public static void celsiusToF(double celsius) {
   double fahrenheit = celsius * 1.8 + 32;
}
```

```
public static double celsiusToF(double celsius) {
    int fahrenheit = celsius * 1.8 + 32;
    return fahrenheit;
}
```

public static double celsiusToF(double celsius) {
 return celsius * 1.8 + 32;

Announcements, Reminders (again)

- P1 is out, due next Tuesday, Feb 4th
 - Start early this one is tough!
 - Doing P1 is *also* studying for the quiz
- R1 released yesterday, due Thursday Feb 6th
- Quiz 0 is on Thursday, February 6 (in your registered quiz section)
 can't make it? email Matt <u>ASAP</u>
- As you potentially rewatch lectures Ed megathreads reminder!
- No pre-class work for next Wed :)