CSE 121 Lesson 9:

Conditionals

Elba Garza & Matt Wang

Winter 2024
TAs: Abby Aishah Anju Annie Archit Ayesha Christian
Hannah Heather Hibbah Jacob James Janvi Jasmine
|
- Jonus Julia Lucas Luke Maria Nicole Shananda
r
E . r-' B Shayna Trey Vidhi Vivian

sli.do #CSE121-9 Today’s playlist;

CSE 121 24wi lecture beats :D

PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING

https://open.spotify.com/playlist/3JnnX8pp7GhXvtYJuIcGKB?si=f166308f7b834ab1

Announcements, Reminders

» Creative Project 2 released — due Tuesday, Feb 6%

* Note: uses Javadoc!
* Also helpful: section problems, + last week’s food for thought

» Resubmission Cycle 2 form released
* Note: this is the last time CO is eligible for resubmission!

* |PL tips!

« Mid-Quarter Formative Feedback with Ken Yasuhara for part
of class on Wednesday, Feb 7th

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

https://studio.youtube.com/video/06xIrMRXHr4/edit
https://courses.cs.washington.edu/courses/cse121/24wi/office_hours/

(PCM) Conditionals (1/4)

if statement Control Flow
if (test) {
body (statements to be executed) = =

Is the conditional test true?

v v

Execute the controlled
< statement(s) inside the body of
the if statement.

Execute the statement after the
conditional.

Executes a block of statements
if and only if the test is true

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

(PCM) Conditionals (2/4)

if (test){

NO YES

if/felse statement Control Flow

Is the conditional test true?

statement(s)
} else {
statement(s) ¥ v
Execute the controlled Execute the controlled
} statement(s) inside the body of statement(s) inside the body of
the else statement. the if statement.

1. If the test is true: execute block of statements

Execute the statement after the
SN +—

if/else statement.

2. If not, execute other block of statements

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

(PCM) Conditionals (3/4)

if/else if statement Control Flow

if (test) {
statement(s) = Is the test 1 true? —
} else if (test) { I ‘
NO YES

statement(s)

Is the test 2 true? j Execute statement(s)
1.

Execute statement(s)

1. |If the first test is true, execute that block 2
2. If not, proceed to the next test, and repeat

3. If none were true, don’t execute any blocks |, Execute the statement(s) after

the conditional structure.

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

(PCM) Conditionals (4/4)

if (test) {
statement(s)

} else if (test) {

statement(s)

}

With a large if-else-if-else chain,

if there is an ending else, exactly one
block will execute

if there is no ending else, zero or one
blocks will execute

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

if/else if statement Control Flow

NO YES

r Is the test 1 true? j
NO YES
Is the test 2 true? j Execute statement(s)
1.

Execute statement(s)

B

Execute the statement(s) after

I the conditional structure.

OF COMPUTER SCIENCE & ENGINEERING

for (int 1 = 1; 1 <= 3; i++) {
System.out.print(mystery(i));

¥
¥

public static String mystery(int n) {
if (n % 2 ==1) {
return "odd ";
} else if (n == 1) {

return "one ";

return "even ";

¥

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

What does this
program output?

A. odd even odd
B. one even odd
C. one even even

D. even even even

sli.do #CSE121-9

OF COMPUTER SCIENCE & ENGINEERING

public static void main(String[] args) {
for (int 1 = 1; 1 <= 3; i++) {
System.out.print(mystery(i));

sli.do #CSE121-9

¥
¥

public static String mystery(int n) {

if (n % 2 ==1) {
return "odd ";

} else if (n == 1) {

return "one "; This else if statement never runs!

} n

return "even ";

¥

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

m[lﬂcﬂ!lll"l'llln IS ThE KeYy
T0 nilnqsllcaces‘srul In cOlleGe

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

Common Problem-Solving Strategies

Analogy — Is this similar to another problem you've seen?

Brainstorming — Consider steps to solve problem before jumping into code
« Trytodoan example "by hand" - outline steps

Solve sub-problems — Is there a smaller part of the problem to solve?

Debugging — Does your solution behave correctly?
 Whatis it doing?
 What do you expect it to do?
* What area of your code controls that part of the output?

Iterative Development — Can we start by solving a different problem that is
easier?

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

Common Problem-Solving Strategies

Analogy — Is this similar to another problem you've seen?

Brainstorming — Consider steps to solve problem before jumping into code
« Trytodoan example "by hand" - outline steps

Solve sub-problems — Is there a smaller part of the problem to solve?

Debugging — Does your solution behave correctly?
 Whatis it doing?
 What do you expect it to do?
* What area of your code controls that part of the output?

Iterative Development — Can we start by solving a different problem that is
easier?

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

Common Problem-Solving Strategies

Analogy — Is this similar to another problem you've seen?

Brainstorming — Consider steps to solve problem before jumping into code
« Tryto doan example "by hand" - outline steps

Solve sub-problems — Is there a smaller part of the problem to solve?

Debugging — Does your solution behave correctly?
 Whatis it doing?
 What do you expect it to do?
* What area of your code controls that part of the output?

Iterative Development — Can we start by solving a different problem that is
easier?

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

int a
int b
int ¢ 12;
if (a < b) {

a *= 2; . i
} else if (b < a) { What is the output A.7 -1 12 sli.do #C5E121-9
) 2 %; produced by

a = c; executing this code? B.-3 -1 13
}
if (¢ % 2 == 0) {

¢ +=1; C.3 -1 13
}
if (b > 0) {

b b D.12 1 12
} else if (a < 9) {

a *= -1;

} E.-14 1 13

System.out.print(a + " " + b + " " + c);

75
_1;

7 S | O | B |

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

@& = Food for Thought @/E3 v

A weekly section where | introduce open problems related to our lecture
topic(s) of the week.

Goals:

1. give you “conversational familiarity” with CS terminology
2. see how CS interacts with other fields and people!
3. point you in the direction of more CSE (or adjacent) classes

Note: not tested content. Just food for thought :)

PAUL G. ALLEN SCHOOL

Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

Wait ... what?

We just learned that methods can call themselves. This is called “recursion”!

Fun fact: this is related to many, many concepts you may have seen in math:

I/ (4

« some keywords: “recurrence relation”, “induction”, “fractals”, “differential equation”

Another fun fact: this is normally a CSE 123 topic, though at other schools

(who start with different languages), you learn this before loops.

Even funner (?) fact: some programming languages, including some of Matt’s

favourites, do not allow variables or loops. You do everything with recursion!

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

So is this on the test???

Absolutely not.

But...

this is (subtly) one of the fundamental ideas of computer science

and repeats itself everywhere. Including with Social Networks :)

if you love thinking about methods calling themselves,
CSE (or math!) might be the right major for you!!

and consider taking CSE 311 and CSE 341 :)

PAUL G. ALLEN SCHOOL Lesson 9 - Winter 2024

OF COMPUTER SCIENCE & ENGINEERING

https://courses.cs.washington.edu/courses/cse311/
https://courses.cs.washington.edu/courses/cse341/

