
Write a static method named insertMiddle that accepts two arrays of integers a and b
as parameters and returns a new array containing elements from the first half of a
followed by all the elements of b followed by elements from the second half of a.
For example, consider the following two arrays:

int[] a = {2, 4, 6, 8, 10};
int[] b = {1, 1, 1};

The call insertMiddle(a, b); should return the following array:

{2, 4, 1, 1, 1, 6, 8, 10}

Notice that if a has an odd length, its shorter half goes first.

You may not construct any extra data structures or String objects to solve this
problem. You may not modify the arrays that are passed in.



Write a method flip that takes a Random object as a parameter and that prints
information about a coin-flipping simulation.

Your method should use the Random object to produce a sequence of simulated coin
flips, printing whether each flip comes up "heads" or "tails". Each outcome should
be equally likely. Your method should stop flipping when you see three heads in a
row. It should return the total number of flips.

For example, if we construct a Random object and make the following calls:

Random r = new Random();
flip(r);
flip(r);

We expect to get a log of execution like this:

heads
tails
heads
heads
heads
3 heads in a row after 5 flips

heads
heads
tails
heads
tails
tails
heads
heads
heads
3 heads in a row after 9 flips

You must exactly reproduce the format of the log above.

Highlight

Highlight



Write a static method named longestName that reads names typed by the user and prints
the longest name (the name that contains the most characters) in the format shown
below. Your method should accept a console Scanner and an integer n as parameters
and should then prompt for n names.

The longest name should be printed with its first letter capitalized and all
subsequent letters in lowercase, regardless of the capitalization the user used when
typing in the name.

If there is a tie for longest between two or more names, use the tied name that was
typed earliest. Also print a message saying that there was a tie, as in the right
log below. It's possible that some shorter names will tie in length, such as DANE
and Erik in the left log below; but don't print a message unless the tie is between
the longest names.

You may assume that n is at least 1, that each name is at least 1 character long, and
that the user will type single-word names consisting of only letters. Two sample
calls and their output are shown below.

Scanner console = new Scanner(System.in);
longestName(console, 5);

name #1? roy
name #2? DANE
name #3? Erik
name #4? sTeFaNiE
name #5? LaurA
Stefanie's name is longest

--------------------------------------------------------
Scanner console = new Scanner(System.in);
longestName(console, 7);

name #1? TrEnt
name #2? rita
name #3? JORDAN
name #4? craig
name #5? leslie
name #6? YUKI
name #7? TaNnEr
Jordan's name is longest
(There was a tie!)

Highlight

Highlight



Write a static method called hashTag that takes a String as a parameter and returns
the String converted to a hashtag. A hashtag is a String made up of a pound sign (#)
followed by a phrase, where each word is capitalized (with the first letter
uppercase, and the other letters lowercase). Words in the original string are
separated by one or more spaces. For example, the call hashTag("I love computer
science") would return "#ILoveComputerScience"

Below are more sample calls:

Method Calls Value Returned
-----------------------------------------------------------------------
hashTag("I love computer science") "#ILoveComputerScience"
hashTag("to be or not to be") "#ToBeOrNotToBe"
hashTag("saY YES") "#SayYes"
hashTag(" edGAr allan pOE ") "#EdgarAllanPoe"
hashTag(" sPooOOOooOoOky") "#Spooooooooooky"
hashtag(" fuNNY #@*^!& sYMbols ") "#Funny#@*^!&Symbols"
hashTag("x") "#X"
hashTag(" ") "#"
hashTag("") "#"

Notice that words can contain other punctuation. Any non-empty sequence of non-space
characters can be a word. Also notice that there may be spaces at the beginning or
end of the String. You may not construct any Scanners or tokenizers to solve this
problem. You may assume that the String has no other whitespace characters such as
tabs or newline characters.

In addition to the String methods on your cheat sheet, you may use the methods
Character.toUpperCase() and Character.toLowerCase(), which take a char as a parameter
and returns the char in uppercase and lowercase, respectively. For example,
Character.toUpperCase('a') returns 'A'. If the character is already in uppercase or
is not a letter, it returns the character unchanged (e.g., Character.toUpperCase('A')
returns 'A' and Character.toUpperCase('@') returns '@').

Highlight

Highlight

Highlight

Highlight


