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3. Debugging
Consider a static method called battle that simulates a battle between two players, which takes two
parameters:

- int minDamage - the minimum amount of damage a player can inflict upon the other
(guaranteed to be at least 0)

- int maxDamage - the maximum amount of damage a player can inflict upon the other
(guaranteed to be greater than minDamage)

The "health" of a player is represented by a number initially set to 100. Each player randomly attacks the
other, subtracting damage from the attacked player's health, until one of the player's health falls below 1.
The next player to attack is randomly determined, and the damage inflicted is a random number
between the minimum damage value and the maximum damage value (inclusive).

For example, suppose the following call was made:
battle(20, 50);

This call to a correct implementation of the method might produce output like the following. (Due to the
randomness involved in the method, this exact output may not be produced every time it is run.):

Let's get ready to rumble!!!

Player 2 attacks! 35 damage...P1: 65, P2: 100

Player 1 attacks! 37 damage...P1: 65, P2: 63

Player 1 attacks! 43 damage...P1: 65, P2: 20

Player 2 attacks! 21 damage...P1: 44, P2: 20

Player 2 attacks! 43 damage...P1: 1, P2: 20

Player 2 attacks! 32 damage...P1: -31, P2: 20

Player 2 wins!

Consider the following proposed buggy implementation of battle:
1 public static void battle(int minDamage, int maxDamage) {
2 System.out.println("Let's get ready to rumble!!!");
3 Random r = new Random();
4 int player = 0;
5 int playerOneHealth = 100;
6 int playerTwoHealth = 100;
7 while (playerOneHealth > 0 || playerTwoHealth > 0) {
8 int damage = r.nextInt(maxDamage - minDamage + 1);
9 player = r.nextInt(2) + 1;
10 if (player == 1) {
11 playerTwoHealth -= damage;
12 } else {
13 playerOneHealth -= damage;
14 }
15 System.out.print("Player " + player + " attacks! " + damage + " damage");
16 System.out.println("P1: " + playerOneHealth + ", P2: " + playerTwoHealth);
17 }
18 System.out.println("Player " + player + " wins!");
19 }
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This implementation contains two bugs that are causing it to not work as intended!

For the same input as before, the buggy implementation might produce the following output:
Let's get ready to rumble!!!

Player 1 attacks! 4 damage...P1: 100, P2: 96

Player 2 attacks! 11 damage...P1: 89, P2: 96

Player 2 attacks! 27 damage...P1: 62, P2: 96

Player 1 attacks! 16 damage...P1: 62, P2: 80

Player 2 attacks! 22 damage...P1: 40, P2: 80

Player 2 attacks! 24 damage...P1: 16, P2: 80

Player 1 attacks! 17 damage...P1: 16, P2: 63

Player 2 attacks! 23 damage...P1: -7, P2: 63

Player 1 attacks! 27 damage...P1: -7, P2: 36

Player 1 attacks! 18 damage...P1: -7, P2: 18

Player 2 attacks! 23 damage...P1: -30, P2: 18

Player 1 attacks! 19 damage...P1: -30, P2: -1

Player 1 wins!

Your task: Annotate (write on) the code below to indicate how you would fix the two bugs. You may add
(using arrows to indicate where to insert), remove (by crossing out), or modify (with a combination) any code
you choose. However, the fix should not require a lot of work.
You must correctly identify both of the lines with issues, or correctly identify and fix one of the bugs for an S
grade.
You must correctly identify both of the lines with the bugs and correctly fix both of the bugs for an E grade.

1 public static void battle(int minDamage, int maxDamage) {

2 System.out.println("Let's get ready to rumble!!!");

3 Random r = new Random();

4 int player = 0;

5 int playerOneHealth = 100;

6 int playerTwoHealth = 100;

7 while (playerOneHealth > 0 && playerTwoHealth > 0) {

8 int damage = r.nextInt(maxDamage - minDamage + 1) + minDamage;

9 player = r.nextInt(2) + 1;

10 if (player == 1) {

11 playerTwoHealth -= damage;

12 } else {

13 playerOneHealth -= damage;

14 }

15 System.out.print("Player " + player + " attacks! " + damage + " damage");

16 System.out.println("P1: " + playerOneHealth + ", P2: " + playerTwoHealth);

17 }

18 System.out.println("Player " + player + " wins!");

19 }
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6. Array Programming
Write a static method named weave that accepts two arrays of integers as a parameter and that returns a
new array that is the result of alternating the values from the two arrays, starting with the first value of the first
array. For example, if variables named a1 and a2 store the following values:

int[] a1 = {1, 2, 3};
int[] a2 = {4, 5, 6};

then the call of weave(a1, a2) would return a new array containing the following values:

[1, 4, 2, 5, 3, 6]

It is possible that the two arrays may have different lengths, in which case after running out of values from
the shorter array, the remaining slots of the result array are filled with the leftover elements of the longer
array. For example, if variables named a1 and a2 store the following values:

int[] a1 = {1, 2, 3, 4, 5, 6};
int[] a2 = {7, 8, 9};

then the call of weave(a1, a2) would return a new array containing the following values:

[1, 7, 2, 8, 3, 9, 4, 5, 6]

You are not permitted to create any additional data structures (e.g. arrays, ArrayLists, Strings) other
than the result array that you return.
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&
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Write your solution to problem #6 here:


