

https://v3.camscanner.com/user/download

https://v3.camscanner.com/user/download

3. Debugging
Consider a static method called battle that simulates a battle between two players, which takes two
parameters:

- int minDamage - the minimum amount of damage a player can inflict upon the other
(guaranteed to be at least 0)

- int maxDamage - the maximum amount of damage a player can inflict upon the other
(guaranteed to be greater than minDamage)

The "health" of a player is represented by a number initially set to 100. Each player randomly attacks the
other, subtracting damage from the attacked player's health, until one of the player's health falls below 1.
The next player to attack is randomly determined, and the damage inflicted is a random number
between the minimum damage value and the maximum damage value (inclusive).

For example, suppose the following call was made:
battle(20, 50);

This call to a correct implementation of the method might produce output like the following. (Due to the
randomness involved in the method, this exact output may not be produced every time it is run.):

Let's get ready to rumble!!!

Player 2 attacks! 35 damage...P1: 65, P2: 100

Player 1 attacks! 37 damage...P1: 65, P2: 63

Player 1 attacks! 43 damage...P1: 65, P2: 20

Player 2 attacks! 21 damage...P1: 44, P2: 20

Player 2 attacks! 43 damage...P1: 1, P2: 20

Player 2 attacks! 32 damage...P1: -31, P2: 20

Player 2 wins!

Consider the following proposed buggy implementation of battle:
1 public static void battle(int minDamage, int maxDamage) {
2 System.out.println("Let's get ready to rumble!!!");
3 Random r = new Random();
4 int player = 0;
5 int playerOneHealth = 100;
6 int playerTwoHealth = 100;
7 while (playerOneHealth > 0 || playerTwoHealth > 0) {
8 int damage = r.nextInt(maxDamage - minDamage + 1);
9 player = r.nextInt(2) + 1;
10 if (player == 1) {
11 playerTwoHealth -= damage;
12 } else {
13 playerOneHealth -= damage;
14 }
15 System.out.print("Player " + player + " attacks! " + damage + " damage");
16 System.out.println("P1: " + playerOneHealth + ", P2: " + playerTwoHealth);
17 }
18 System.out.println("Player " + player + " wins!");
19 }

make sure

ather

info abouttoiameters & this means that the battle ends if one
-

of the players
! health hits below 1 (< 1)

should ↑
playeroft

↳ this range
: minDamages damage _ maxDamage

*notice Key word : inclusive !

notice now

there is no mention

about any
1

"returns

↳ void method!

from the next page,
we have exactly two bugstofix (no more

,
no less). check out the next page for buggyoutput !-

20 50

& with 11
,

the battle will continue until th players' healths hit < /

consider : true /I false I true

true && false = false
①
&& both conditions (health >0 for both) must betrue for battle to go on

X ②
+ minDamage

A

2 remember v.
nextInt (max-min+) + min ?O

max-min + gets the total number of value) for our random number

generation between min and max inclusivelour range)

↳but we need totmin to ensure we are starting at our min value, not O!

now,
we have a

for battle /20
,
50)- r

.
next Int (50-20 + 1) + 20

range [20
,
501 for

↳31 numbers ↳ starting our random number
in range value generation !

This implementation contains two bugs that are causing it to not work as intended!

For the same input as before, the buggy implementation might produce the following output:
Let's get ready to rumble!!!

Player 1 attacks! 4 damage...P1: 100, P2: 96

Player 2 attacks! 11 damage...P1: 89, P2: 96

Player 2 attacks! 27 damage...P1: 62, P2: 96

Player 1 attacks! 16 damage...P1: 62, P2: 80

Player 2 attacks! 22 damage...P1: 40, P2: 80

Player 2 attacks! 24 damage...P1: 16, P2: 80

Player 1 attacks! 17 damage...P1: 16, P2: 63

Player 2 attacks! 23 damage...P1: -7, P2: 63

Player 1 attacks! 27 damage...P1: -7, P2: 36

Player 1 attacks! 18 damage...P1: -7, P2: 18

Player 2 attacks! 23 damage...P1: -30, P2: 18

Player 1 attacks! 19 damage...P1: -30, P2: -1

Player 1 wins!

Your task: Annotate (write on) the code below to indicate how you would fix the two bugs. You may add
(using arrows to indicate where to insert), remove (by crossing out), or modify (with a combination) any code
you choose. However, the fix should not require a lot of work.
You must correctly identify both of the lines with issues, or correctly identify and fix one of the bugs for an S
grade.
You must correctly identify both of the lines with the bugs and correctly fix both of the bugs for an E grade.

1 public static void battle(int minDamage, int maxDamage) {

2 System.out.println("Let's get ready to rumble!!!");

3 Random r = new Random();

4 int player = 0;

5 int playerOneHealth = 100;

6 int playerTwoHealth = 100;

7 while (playerOneHealth > 0 && playerTwoHealth > 0) {

8 int damage = r.nextInt(maxDamage - minDamage + 1) + minDamage;

9 player = r.nextInt(2) + 1;

10 if (player == 1) {

11 playerTwoHealth -= damage;

12 } else {

13 playerOneHealth -= damage;

14 }

15 System.out.print("Player " + player + " attacks! " + damage + " damage");

16 System.out.println("P1: " + playerOneHealth + ", P2: " + playerTwoHealth);

17 }

18 System.out.println("Player " + player + " wins!");

19 }

only 100 places tofix !

definitely check out
->

shouldn't our range be between [20
,
501 ?

the buggy output for

any bugs !

we should have ended the program here by now

since PI health already hit <) above

https://v3.camscanner.com/user/download

https://v3.camscanner.com/user/download

6. Array Programming
Write a static method named weave that accepts two arrays of integers as a parameter and that returns a
new array that is the result of alternating the values from the two arrays, starting with the first value of the first
array. For example, if variables named a1 and a2 store the following values:

int[] a1 = {1, 2, 3};
int[] a2 = {4, 5, 6};

then the call of weave(a1, a2) would return a new array containing the following values:

[1, 4, 2, 5, 3, 6]

It is possible that the two arrays may have different lengths, in which case after running out of values from
the shorter array, the remaining slots of the result array are filled with the leftover elements of the longer
array. For example, if variables named a1 and a2 store the following values:

int[] a1 = {1, 2, 3, 4, 5, 6};
int[] a2 = {7, 8, 9};

then the call of weave(a1, a2) would return a new array containing the following values:

[1, 7, 2, 8, 3, 9, 4, 5, 6]

You are not permitted to create any additional data structures (e.g. arrays, ArrayLists, Strings) other
than the result array that you return.

notice how we
--

are returning---

a new array
:

O I &
this means we

should bebuilding it

3 our parameters
here in our method !

↳not reference semantics
-

O O 11 22

notice how this new array weaves al and a2
, starting with index O of al

,
then index O of ad

,
and

new array :

O I 2 3 45 traverses to the right through all elements in both arrays

<ala something to consider

main edge case:

arrays have

different lengths

weave attach
notice how we firstweave al and a2 (until ad runs out ofelements),I then attach the excess elements at the end (here

,
al length > ah length)

only create one new array !

MyAnnotatedsolution :

& write method header : parameters- int[Ial
,
int[]a2 ; return : int [1

public static int [1 weave (int [1al , in+ [1 a2) 4
1/ since we are returning an int [1

,
create a new int[]

11 this int[I will contain all elements from al and 92
,

so its length should be al. length+ a2. length
int [] result = new int[al

. length + a2. length];
②weave : we should firstdetermine which array (a) or a2) has theshortest length ;

we will weaveuntil whicheverarray first runs out ofelements

al : [1
,

2
.

31 a2 : [4
,
5

.
6] noticehow allol is mapped to result[O] index i of al is mapped to

0 12 0 12
a2[O] is mapped to result[11 index2i of result (if i = 1

,
resultindex = 1 . 2 = 2)

00 1122

result:[1
, 4

,
2

,
5

,
3

,
61 al [11 is mapped to result [21 => indexi of a2 is mapped to

0 12345
a2[1 is mapped to result [37 indexcit of result lif i= 1

,
result index = 1 .2 +) = 3)

:
for lint i = 0; i < Math

.

min (a) length,
a2Length); i++ 4

result [2i]= al[i];
result [2i+ 11 = a2[i];

&

③ attach excess elements of one array after the weave in result

*we needto determine whichever
al : [1.

2
.
3

.
4

.
5

.61 a2 : [7
.

8
,91I arrayis longer so thatwe can

0 12345 0 12

attach thoseelements to theend
result : 19,2,'z2q, t of weave in result

↳ noticehow ourstarting index to attach is two times theminimum array length
13 .2 = 6)

.

to iterate throughthe result, wewould startfrom this index until

result. length exclusive.
↳) notice how the difference between indexi of result and thecorresponding
index of thearray with excess elements istheminimumarray length; we can

use"i-Math
.
min (a) . Length ,

a2. length)"to retrieve theelement inthe longer array

for (inti = 2 . Math.min /a). length, a2length); i < result
. length; i++)

if (a) length > a2.Length)
result[i]= all i- Math.

min/al
. length,

alength)1 ;
3 else
result[i]= a2ti-Math .

min (a). length ,
a2. length)1 ;

&
&
return result; // returnour int [l result

&

Write your solution to problem #6 here:

